1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion

      , , ,
      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling

          Current neural induction protocols in human ES cells (hESCs) rely on embryoid body formation, stromal feeder co-culture, or selective survival conditions; each strategy displaying significant drawbacks such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient for inducing rapid and complete neural conversion of hESCs under adherent culture conditions. Temporal fate analysis reveals a transient FGF5+ epiblast-like stage followed by PAX6+ neural cells competent of rosette formation. Initial cell density determines the ratio of CNS versus neural crest progeny. Directed differentiation of human iPSCs into midbrain dopamine and spinal motoneurons confirm robustness and general applicability of the novel induction protocol. Noggin/SB431542 based neural induction should greatly facilitate the use of hESC and hiPSCs in regenerative medicine and disease modeling and obviate the need for stromal feeder or embryoid body based protocols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The FGF family: biology, pathophysiology and therapy.

            The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Derivation of human embryonic stem cells in defined conditions.

              We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.
                Bookmark

                Author and article information

                Journal
                Biomaterials
                Biomaterials
                Elsevier BV
                01429612
                July 2020
                July 2020
                : 248
                : 120007
                Article
                10.1016/j.biomaterials.2020.120007
                32302801
                9d2972b8-a641-422a-bb30-7750c2a7b8bf
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article