12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating Prolactin Associates With Diabetes and Impaired Glucose Regulation : A population-based study

      research-article
      , MD, , MD, PHD, , PHD, , MD, , BS, , MD, , MD, , PHD, , MD, PHD, , MD, PHD, , MD, PHD, , MD, PHD
      Diabetes Care
      American Diabetes Association

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Prolactin is a major stimulus for the β-cell adaptation during gestation and guards postpartum women against gestational diabetes. Most studies of the role of prolactin on glucose metabolism have been conducted in humans and animals during pregnancy. However, little is known concerning the association between circulating prolactin and glucose metabolism outside pregnancy in epidemiological studies. We aimed to determine whether the variation of circulating prolactin concentration associates with diabetes and impaired glucose regulation (IGR) in a cross-sectional study.

          RESEARCH DESIGN AND METHODS

          We recruited 2,377 participants (1,034 men and 1,343 postmenopausal women) without hyperprolactinemia, aged 40 years and older, in Shanghai, China. Diabetes and IGR were determined by an oral glucose tolerance test. Multinomial logit analyses were performed to evaluate the relationship of prolactin with diabetes and IGR.

          RESULTS

          Prolactin levels decreased from normal glucose regulation to IGR to diabetes. Multinomial logit analyses, adjusted for potential confounding factors, showed that high circulating prolactin was associated with lower prevalence of diabetes and IGR. The adjusted odds ratios (95% CI) for IGR and diabetes for the highest compared with the lowest quartile of prolactin were 0.54 (95% CI 0.33–0.89) and 0.38 (0.24–0.59) in men and 0.54 (0.36–0.81) and 0.47 (0.32–0.70) in women.

          CONCLUSIONS

          High circulating prolactin associates with lower prevalence of diabetes and IGR in the current study. Further studies are warranted to confirm this association.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin.

          Adiponectin or adipocyte complement-related protein of 30 kDa (Acrp30) is a circulating protein produced exclusively in adipocytes. Circulating Acrp30 levels have been associated with insulin sensitivity in adult mice and humans, yet the Acrp30 profile over the lifespan and its hormonal regulation in vivo have not been previously described. Hence, we set forth to determine whether hormonal and metabolic changes associated with sexual maturation, reproduction, aging, and calorie restriction affect Acrp30. In mice, Acrp30 levels increase during sexual maturation by 4-fold in males and 10-fold in females. Neonatal castration (CX) allows Acrp30 of adults to reach female levels. CX in adults does not lead to female Acrp30 levels unless glucocorticoid exposure is elevated simultaneously by implant. Ovariectomy of infant mice does not interfere with the pubertal rise of Acrp30. However, ovariectomy in adults increases Acrp30. Estrogen suppressed Acrp30 in mice and 3T3-L1 adipocytes. In parallel to changes in estrogen action, Acrp30 decreased in late gestation but increased in both calorie-restricted and old (anovulatory) mice. The reduction of Acrp30 in lactating dams is consistent with a suppressive effect of prolactin and a stimulating effect of bromocriptine. In summary, Acrp30 levels in serum are under complex hormonal control and may play a key role in determining systemic insulin sensitivity under the respective conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Focus on prolactin as a metabolic hormone.

            New information about the effects of prolactin (PRL) on metabolic processes warrants re-evaluation of the overall metabolic actions of PRL. PRL affects metabolic homeostasis by regulating key enzymes and transporters that are associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release. PRL supports the growth of pancreatic islets, stimulates insulin secretion and increases citrate production in the prostate. A specific case is made for PRL in the human breast and adipose tissue, where it acts as a circulating hormone and an autocrine or paracrine factor. Although the overall effects of PRL on body composition are modest and species specific, PRL might be involved in the manifestation of insulin resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance.

              PRL and placental lactogen (PL) stimulate beta-cell proliferation and insulin gene transcription in isolated islets and rat insulinoma cells, but the roles of the lactogenic hormones in islet development and insulin production in vivo remain unclear. To clarify the roles of the lactogens in pancreatic development and function, we measured islet density (number of islets/cm(2)) and mean islet size, beta-cell mass, pancreatic insulin mRNA levels, islet insulin content, and the insulin secretory response to glucose in an experimental model of lactogen resistance: the PRL receptor (PRLR)-deficient mouse. We then measured plasma glucose concentrations after ip injections of glucose or insulin. Compared with wild-type littermates, PRLR-deficient mice had 26-42% reductions (P < 0.01) in islet density and beta-cell mass. The reductions in islet density and beta-cell mass were noted as early as 3 wk of age and persisted through 8 months of age and were observed in both male and female mice. Pancreatic islets of PRLR-deficient mice were smaller than those of wild-type mice at weaning but not in adulthood. Pancreatic insulin mRNA levels were 20-30% lower (P < 0.05) in adult PRLR-deficient mice than in wild-type mice, and the insulin content of isolated islets was reduced by 16-25%. The insulin secretory response to ip glucose was blunted in PRLR-deficient males in vivo (P < 0.05) and in isolated islets of PRLR-deficient females and males in vitro (P < 0.01). Fasting blood glucose concentrations in PRLR-deficient mice were normal, but glucose levels after an ip glucose load were 10-20% higher (P < 0.02) than those in wild-type mice. On the other hand, the glucose response to ip insulin was normal. Our observations establish a physiologic role for lactogens in islet development and function.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                July 2013
                12 June 2013
                : 36
                : 7
                : 1974-1980
                Affiliations
                [1]Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, E-Institute of Shanghai Universities, Shanghai, China, and the Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
                Author notes
                Corresponding author: Guang Ning, gning@ 123456sibs.ac.cn .

                T.W. and J.L. contributed equally to this article.

                Article
                1893
                10.2337/dc12-1893
                3687322
                23340889
                9d4b4d8d-b715-4f0b-9e30-44a522979819
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 17 September 2012
                : 19 December 2012
                Page count
                Pages: 7
                Categories
                Original Research
                Epidemiology/Health Services Research

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article