2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis

      1 ,   1
      ELECTROPHORESIS
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: not found
          • Article: not found

          Metal-organic framework materials as chemical sensors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent metal-organic frameworks for chemical sensing and explosive detection.

            Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide

              A key challenge in the field of electrochemical carbon dioxide reduction is the design of catalytic materials featuring high product selectivity, stability, and a composition of earth-abundant elements. In this work, we introduce thin films of nanosized metal-organic frameworks (MOFs) as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous electrolytes. Detailed examination of a cobalt-porphyrin MOF, Al2(OH)2TCPP-Co (TCPP-H2 = 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate) revealed a selectivity for CO production in excess of 76% and stability over 7 h with a per-site turnover number (TON) of 1400. In situ spectroelectrochemical measurements provided insights into the cobalt oxidation state during the course of reaction and showed that the majority of catalytic centers in this MOF are redox-accessible where Co(II) is reduced to Co(I) during catalysis.
                Bookmark

                Author and article information

                Contributors
                Journal
                ELECTROPHORESIS
                ELECTROPHORESIS
                Wiley
                01730835
                December 2017
                December 2017
                September 25 2017
                : 38
                : 24
                : 3059-3078
                Affiliations
                [1 ]Department of Chemistry; Capital Normal University; Beijing P. R. China
                Article
                10.1002/elps.201700248
                28869768
                9d4f5024-2d78-420b-8cd9-a45428d98b16
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article