25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

          Methodology and Principal Findings

          The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

          Conclusions and Significance

          The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          A standard curve based method for relative real time PCR data processing

          Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I) Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II) The optimal threshold is selected automatically from regression parameters of the standard curve. (III) Crossing points (CPs) are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV) The means and their variances are calculated for CPs in PCR replicas. (V) The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that standard curve design remains a reliable and simple alternative to the PCR-efficiency based calculations in relative real time PCR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-time PCR in the microbiology laboratory.

            I MacKay (2004)
            Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic concepts of microarrays and potential applications in clinical microbiology.

              The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple microarray platforms exist, including printed double-stranded DNA and oligonucleotide arrays, in situ-synthesized arrays, high-density bead arrays, electronic microarrays, and suspension bead arrays. One aim of this paper is to review microarray technology, highlighting technical differences between them and each platform's advantages and disadvantages. Although the use of microarrays to generate gene expression data has become routine, applications pertinent to clinical microbiology continue to rapidly expand. This review highlights uses of microarray technology that impact diagnostic microbiology, including the detection and identification of pathogens, determination of antimicrobial resistance, epidemiological strain typing, and analysis of microbial infections using host genomic expression and polymorphism profiles.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                23 April 2012
                : 7
                : 4
                : e35438
                Affiliations
                [1]Alere Technologies GmbH, Jena, Germany
                Chang Gung University, Taiwan
                Author notes

                Conceived and designed the experiments: TU EE TS KS. Performed the experiments: TU EE TS KS. Analyzed the data: TU EE TS KS. Contributed reagents/materials/analysis tools: TU EE TS KS. Wrote the paper: TU EE TS KS.

                Article
                PONE-D-11-16629
                10.1371/journal.pone.0035438
                3335129
                22539973
                9d56d86e-46a5-4926-b86d-65bcddd037d1
                Ullrich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 August 2011
                : 16 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                DNA
                DNA amplification
                RNA
                RNA processing
                Biophysics
                Nucleic Acids
                RNA
                RNA processing
                Genetics
                Gene Expression
                RNA processing
                Molecular Cell Biology
                Gene Expression
                RNA processing
                Nucleic Acids
                RNA
                RNA processing
                Medicine
                Diagnostic Medicine
                Test Evaluation
                Infectious Diseases
                Viral Diseases
                HIV
                HIV diagnosis and management
                Physics
                Biophysics
                Nucleic Acids
                RNA
                RNA processing

                Uncategorized
                Uncategorized

                Comments

                Comment on this article