Blog
About

13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sweeteners and Risk of Obesity and Type 2 Diabetes: The Role of Sugar-Sweetened Beverages

      ,

      Current Diabetes Reports

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temporal patterns over the past three to four decades have shown a close parallel between the rise in added sugar intake and the global obesity and type 2 diabetes (T2D) epidemics. Sugar-sweetened beverages (SSBs), which include the full spectrum of soft drinks, fruit drinks, energy and vitamin water drinks, are composed of naturally derived caloric sweeteners such as sucrose, high fructose corn syrup, or fruit juice concentrates. Collectively they are the largest contributor to added sugar intake in the US diet. Over the past 10 years a number of large observational studies have found positive associations between SSB consumption and long-term weight gain and development of T2D and related metabolic conditions. Experimental studies provide insight into potential biological mechanisms and illustrate that intake of SSBs increases T2D and cardiovascular risk factors. SSBs promote weight gain by incomplete compensation of liquid calories and contribute to increased risk of T2D not only through weight gain, but also independently through glycemic effects of consuming large amounts of rapidly absorbable sugars and metabolic effects of fructose.

          Related collections

          Most cited references 74

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in diet and lifestyle and long-term weight gain in women and men.

           Le Hao,  Frank Hu,  Eric Rimm (2011)
          Specific dietary and other lifestyle behaviors may affect the success of the straightforward-sounding strategy "eat less and exercise more" for preventing long-term weight gain. We performed prospective investigations involving three separate cohorts that included 120,877 U.S. women and men who were free of chronic diseases and not obese at baseline, with follow-up periods from 1986 to 2006, 1991 to 2003, and 1986 to 2006. The relationships between changes in lifestyle factors and weight change were evaluated at 4-year intervals, with multivariable adjustments made for age, baseline body-mass index for each period, and all lifestyle factors simultaneously. Cohort-specific and sex-specific results were similar and were pooled with the use of an inverse-variance-weighted meta-analysis. Within each 4-year period, participants gained an average of 3.35 lb (5th to 95th percentile, -4.1 to 12.4). On the basis of increased daily servings of individual dietary components, 4-year weight change was most strongly associated with the intake of potato chips (1.69 lb), potatoes (1.28 lb), sugar-sweetened beverages (1.00 lb), unprocessed red meats (0.95 lb), and processed meats (0.93 lb) and was inversely associated with the intake of vegetables (-0.22 lb), whole grains (-0.37 lb), fruits (-0.49 lb), nuts (-0.57 lb), and yogurt (-0.82 lb) (P≤0.005 for each comparison). Aggregate dietary changes were associated with substantial differences in weight change (3.93 lb across quintiles of dietary change). Other lifestyle factors were also independently associated with weight change (P 8 hours of sleep), and television watching (0.31 lb per hour per day). Specific dietary and lifestyle factors are independently associated with long-term weight gain, with a substantial aggregate effect and implications for strategies to prevent obesity. (Funded by the National Institutes of Health and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes

            OBJECTIVE Consumption of sugar-sweetened beverages (SSBs), which include soft drinks, fruit drinks, iced tea, and energy and vitamin water drinks has risen across the globe. Regular consumption of SSBs has been associated with weight gain and risk of overweight and obesity, but the role of SSBs in the development of related chronic metabolic diseases, such as metabolic syndrome and type 2 diabetes, has not been quantitatively reviewed. RESEARCH DESIGN AND METHODS We searched the MEDLINE database up to May 2010 for prospective cohort studies of SSB intake and risk of metabolic syndrome and type 2 diabetes. We identified 11 studies (three for metabolic syndrome and eight for type 2 diabetes) for inclusion in a random-effects meta-analysis comparing SSB intake in the highest to lowest quantiles in relation to risk of metabolic syndrome and type 2 diabetes. RESULTS Based on data from these studies, including 310,819 participants and 15,043 cases of type 2 diabetes, individuals in the highest quantile of SSB intake (most often 1–2 servings/day) had a 26% greater risk of developing type 2 diabetes than those in the lowest quantile (none or <1 serving/month) (relative risk [RR] 1.26 [95% CI 1.12–1.41]). Among studies evaluating metabolic syndrome, including 19,431 participants and 5,803 cases, the pooled RR was 1.20 [1.02–1.42]. CONCLUSIONS In addition to weight gain, higher consumption of SSBs is associated with development of metabolic syndrome and type 2 diabetes. These data provide empirical evidence that intake of SSBs should be limited to reduce obesity-related risk of chronic metabolic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.

              Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
                Bookmark

                Author and article information

                Journal
                Current Diabetes Reports
                Curr Diab Rep
                Springer Science and Business Media LLC
                1534-4827
                1539-0829
                April 2012
                January 31 2012
                April 2012
                : 12
                : 2
                : 195-203
                Article
                10.1007/s11892-012-0259-6
                22289979
                © 2012

                http://www.springer.com/tdm

                Comments

                Comment on this article