3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flower strips as a carbon sequestration measure in temperate croplands

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Flower strips have been shown to increase insect biodiversity and improve agricultural yields through increased pollination and pest predation. Less is known about their potential to increase soil organic carbon (SOC). We aimed to investigate the biomass production and SOC sequestration potential of flower strips as a sustainable management option of temperate agricultural soils.

          Methods

          23 flower strips across varying soil types and climatic regions in Germany were sampled for aboveground and belowground peak biomass in order to estimate the annual carbon input to the soil. Those were used as 23 scenarios to model the potential SOC sequestration of the flower strips compared to a business-as-usual scenario for 1533 sites of the German Agricultural Soil Inventory using the RothC model.

          Results

          On average, flower strips sequestered 0.48 ± 0.36 Mg C ha −1 year −1 in the initial 20-year period after establishment. Converting 1 % of the total German cropland area into flower strips would thus lead to a mitigation of 0.24 Tg CO 2 year −1, which equals 0.4 % of current agricultural greenhouse gas emissions in Germany.

          We found a negative correlation between C sequestration rate and the number of plant species in the flower strips, mainly related to grasses outcompeting herbaceous species.

          Conclusion

          Flower strips are one overlooked option for increasing SOC stocks of croplands that has multiple benefits for agro-ecosystems. However, within a flower strip it might not be possible to maximise both plant biodiversity and SOC sequestration.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          The measurement of diversity in different types of biological collections

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

            Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wild pollinators enhance fruit set of crops regardless of honey bee abundance.

              The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Plant and Soil
                Plant Soil
                Springer Science and Business Media LLC
                0032-079X
                1573-5036
                October 10 2022
                Article
                10.1007/s11104-022-05718-5
                9d5d3e08-4170-4b90-a5bc-5b5bf73071ae
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article