23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      pH-Taxis of Biohybrid Microsystems

      research-article
      1 , 1 , 2 , a , 1 , 3
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Acid pH in tumors and its potential for therapeutic exploitation.

          Measurement of pH in tissue has shown that the microenvironment in tumors is generally more acidic than in normal tissues. Major mechanisms which lead to tumor acidity probably include the production of lactic acid and hydrolysis of ATP in hypoxic regions of tumors. Further reduction in pH may be achieved in some tumors by administration of glucose (+/- insulin) and by drugs such as hydralazine which modify the relative blood flow to tumors and normal tissues. Cells have evolved mechanisms for regulating their intracellular pH. The amiloride-sensitive Na+/H+ antiport and the DIDS-sensitive Na+-dependent HCO3-/Cl- exchanger appear to be the major mechanisms for regulating pHi under conditions of acid loading, although additional mechanisms may contribute to acid extrusion. Mitogen-induced initiation of proliferation in some cells is preceded by cytoplasmic alkalinization, usually triggered by stimulation of Na+/H+ exchange; proliferation of other cells can be induced without prior alkalinization. Mutant cells which lack Na+/H+ exchange activity have reduced or absent ability to generate solid tumors; a plausible explanation is the failure of such mutant cells to withstand acidic conditions that are generated during tumor growth. Studies in tissue culture have demonstrated that the combination of hypoxia and acid pHe is toxic to mammalian cells, whereas short exposures to either factor alone are not very toxic. This interaction may contribute to cell death and necrosis in solid tumors. Acidic pH may influence the outcome of tumor therapy. There are rather small effects of pHe on the response of cells to ionizing radiation but acute exposure to acid pHe causes a marked increase in response to hyperthermia; this effect is decreased in cells that are adapted to low pHe. Acidity may have varying effects on the response of cells to conventional anticancer drugs. Ionophores such as nigericin or CCCP cause acid loading of cells in culture and are toxic only at low pHc; this toxicity is enhanced by agents such as amiloride or DIDS which impair mechanisms involved in regulation of pHi. It is suggested that acid conditions in tumors might allow the development of new and relatively specific types of therapy which are directed against mechanisms which regulate pHi under acid conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemotaxis in Escherichia coli analysed by three-dimensional tracking.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Moving fluid with bacterial carpets.

              We activated a solid-fluid interface by attaching flagellated bacteria to a solid surface. We adsorbed swarmer cells of Serratia marcescens to polydimethylsiloxane or polystyrene. The cell bodies formed a densely packed monolayer while their flagella continued to rotate freely. Motion of the fluid close to an extended flat surface, visualized with tracer beads, was dramatically enhanced compared to the motion farther away. The tracer beads revealed complex ever-changing flow patterns, some linear (rivers), others rotational (whirlpools). Typical features of this flow were small (tens of micro m) and reasonably stable (many minutes). The surface performed active mixing equivalent to diffusion with a coefficient of 2 x 10(-7) cm(2)/s. We call these flat constructs "bacterial carpets". When attached to polystyrene beads or to fragments of polydimethylsiloxane, the bacteria generated both translation and rotation. We call these constructs "auto-mobile beads" or "auto-mobile chips". Given the size and strength of the flow patterns near the carpets, the motion must be generated by small numbers of coordinated flagella. We should be able to produce larger and longer-range effects by increasing coordination.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 June 2015
                2015
                : 5
                : 11403
                Affiliations
                [1 ]Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, PA 15213, USA
                [2 ]Department of Engineering, Robert Morris University , Pittsburgh, PA 15108, USA
                [3 ]Max Planck Institute for Intelligent Systems , Stuttgart 70569, Germany
                Author notes
                Article
                srep11403
                10.1038/srep11403
                4466791
                26073316
                9d5e46a0-8df1-4102-b7ca-ee5af7aaffe9
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 January 2015
                : 06 May 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article