81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dry eye disease (DED) is a multifactorial disease of the ocular surface and tear film that has gained awareness as a public health problem. Characteristics of DED include tear film instability, hyperosmolarity, and ocular surface inflammation, which can occur independently or may be a sequela of numerous ocular diseases, ocular surgery or contact lens wear. Much has been learned about the impact of the disease to help affected individuals who report symptoms of poor vision, pain, and tearing. Recently, new research highlights the importance of the role of ocular surface inflammation and damage in DED—leading to a vicious cycle of inflammation as well as loss of tear film homeostasis. DED immunopathophysiology is characterized by four stages: initiation, amplification, recruitment, and re-initiation. Cyclosporine is proven to be a valuable ophthalmic therapeutic for DED through its immunomodulatory actions and regulation of the adaptive immune response. Cyclosporine mechanism of action is well described in the published literature and the myriad of benefits in all four stages lend a broad-based immunomodulatory function particularly suitable for addressing DED. Furthermore, cyclosporine has unique goblet cell density improvement capabilities as well as anti-apoptotic properties. Topical formulations of cyclosporine are centered around addressing the highly lipophilic nature of the molecule. The poor aqueous solubility of cyclosporine traditionally presented technical challenges in drug delivery to the ocular surface. Newer formulations such as cationic emulsions and nanomicellar aqueous solutions address formulation, tissue concentration, and drug delivery challenges.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          TFOS DEWS II Definition and Classification Report

          The goals of the TFOS DEWS II Definition and Classification Subcommittee were to create an evidence-based definition and a contemporary classification system for dry eye disease (DED). The new definition recognizes the multifactorial nature of dry eye as a disease where loss of homeostasis of the tear film is the central pathophysiological concept. Ocular symptoms, as a broader term that encompasses reports of discomfort or visual disturbance, feature in the definition and the key etiologies of tear film instability, hyperosmolarity, and ocular surface inflammation and damage were determined to be important for inclusion in the definition. In the light of new data, neurosensory abnormalities were also included in the definition for the first time. In the classification of DED, recent evidence supports a scheme based on the pathophysiology where aqueous deficient and evaporative dry eye exist as a continuum, such that elements of each are considered in diagnosis and management. Central to the scheme is a positive diagnosis of DED with signs and symptoms, and this is directed towards management to restore homeostasis. The scheme also allows consideration of various related manifestations, such as non-obvious disease involving ocular surface signs without related symptoms, including neurotrophic conditions where dysfunctional sensation exists, and cases where symptoms exist without demonstrable ocular surface signs, including neuropathic pain. This approach is not intended to override clinical assessment and judgment but should prove helpful in guiding clinical management and research.
            • Record: found
            • Abstract: found
            • Article: not found

            TFOS DEWS II Epidemiology Report

            The subcommittee reviewed the prevalence, incidence, risk factors, natural history, morbidity and questionnaires reported in epidemiological studies of dry eye disease (DED). A meta-analysis of published prevalence data estimated the impact of age and sex. Global mapping of prevalence was undertaken. The prevalence of DED ranged from 5 to 50%. The prevalence of signs was higher and more variable than symptoms. There were limited prevalence studies in youth and in populations south of the equator. The meta-analysis confirmed that prevalence increases with age, however signs showed a greater increase per decade than symptoms. Women have a higher prevalence of DED than men, although differences become significant only with age. Risk factors were categorized as modifiable/non-modifiable, and as consistent, probable or inconclusive. Asian ethnicity was a mostly consistent risk factor. The economic burden and impact of DED on vision, quality of life, work productivity, psychological and physical impact of pain, are considerable, particularly costs due to reduced work productivity. Questionnaires used to evaluate DED vary in their utility. Future research should establish the prevalence of disease of varying severity, the incidence in different populations and potential risk factors such as youth and digital device usage. Geospatial mapping might elucidate the impact of climate, environment and socioeconomic factors. Given the limited study of the natural history of treated and untreated DED, this remains an important area for future research.
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage Cytokines: Involvement in Immunity and Infectious Diseases

              The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting “classically activated,” to anti-inflammatory or “alternatively activated” macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                opth
                clinop
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove
                1177-5467
                1177-5483
                02 December 2020
                2020
                : 14
                : 4187-4200
                Affiliations
                [1 ]Periman Eye Institute , Seattle, WA, USA
                [2 ]Scripps Health , La Jolla, CA, USA
                [3 ]Kentucky Eye Institute , Lexington, KY, USA
                Author notes
                Correspondence: Laura M Periman Periman Eye Institute , Seattle, WA, USA Email dryeyemaster@gmail.com
                Author information
                http://orcid.org/0000-0001-9036-5158
                http://orcid.org/0000-0003-1390-2532
                Article
                279051
                10.2147/OPTH.S279051
                7719434
                33299295
                9d6518d2-b070-4396-b608-f47300d2405b
                © 2020 Periman et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 27 August 2020
                : 23 October 2020
                Page count
                Figures: 2, Tables: 5, References: 100, Pages: 14
                Categories
                Review

                Ophthalmology & Optometry
                dry eye disease,cyclosporine a,emulsion,otx-101,keratoconjunctivitis sicca

                Comments

                Comment on this article

                Related Documents Log