4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Value Proposition for Pathologists: A Population Health Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transition to a value-based payment system offers pathologists the opportunity to play an increased role in population health by improving outcomes and safety as well as reducing costs. Although laboratory testing itself accounts for a small portion of health-care spending, laboratory data have significant downstream effects in patient management as well as diagnosis. Pathologists currently are heavily engaged in precision medicine, use of laboratory and pathology test results (including autopsy data) to reduce diagnostic errors, and play leading roles in diagnostic management teams. Additionally, pathologists can use aggregate laboratory data to monitor the health of populations and improve health-care outcomes for both individual patients and populations. For the profession to thrive, pathologists will need to focus on extending their roles outside the laboratory beyond the traditional role in the analytic phase of testing. This should include leadership in ensuring correct ordering and interpretation of laboratory testing and leadership in population health programs. Pathologists in training will need to learn key concepts in informatics and data analytics, health-care economics, public health, implementation science, and health systems science. While these changes may reduce reimbursement for the traditional activities of pathologists, new opportunities arise for value creation and new compensation models. This report reviews these opportunities for pathologist leadership in utilization management, precision medicine, reducing diagnostic errors, and improving health-care outcomes.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Landscape of Inappropriate Laboratory Testing: A 15-Year Meta-Analysis

          Background Laboratory testing is the single highest-volume medical activity and drives clinical decision-making across medicine. However, the overall landscape of inappropriate testing, which is thought to be dominated by repeat testing, is unclear. Systematic differences in initial vs. repeat testing, measurement criteria, and other factors would suggest new priorities for improving laboratory testing. Methods A multi-database systematic review was performed on published studies from 1997–2012 using strict inclusion and exclusion criteria. Over- vs. underutilization, initial vs. repeat testing, low- vs. high-volume testing, subjective vs. objective appropriateness criteria, and restrictive vs. permissive appropriateness criteria, among other factors, were assessed. Results Overall mean rates of over- and underutilization were 20.6% (95% CI 16.2–24.9%) and 44.8% (95% CI 33.8–55.8%). Overutilization during initial testing (43.9%; 95% CI 35.4–52.5%) was six times higher than during repeat testing (7.4%; 95% CI 2.5–12.3%; P for stratum difference <0.001). Overutilization of low-volume tests (32.2%; 95% CI 25.0–39.4%) was three times that of high-volume tests (10.2%; 95% CI 2.6–17.7%; P<0.001). Overutilization measured according to restrictive criteria (44.2%; 95% CI 36.8–51.6%) was three times higher than for permissive criteria (12.0%; 95% CI 8.0–16.0%; P<0.001). Overutilization measured using subjective criteria (29.0%; 95% CI 21.9–36.1%) was nearly twice as high as for objective criteria (16.1%; 95% CI 11.0–21.2%; P = 0.004). Together, these factors explained over half (54%) of the overall variability in overutilization. There were no statistically significant differences between studies from the United States vs. elsewhere (P = 0.38) or among chemistry, hematology, microbiology, and molecular tests (P = 0.05–0.65) and no robust statistically significant trends over time. Conclusions The landscape of overutilization varies systematically by clinical setting (initial vs. repeat), test volume, and measurement criteria. Underutilization is also widespread, but understudied. Expanding the current focus on reducing repeat testing to include ordering the right test during initial evaluation may lead to fewer errors and better care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effectiveness of Practices To Increase Timeliness of Providing Targeted Therapy for Inpatients with Bloodstream Infections: a Laboratory Medicine Best Practices Systematic Review and Meta-analysis

            SUMMARY Background. Bloodstream infection (BSI) is a major cause of morbidity and mortality throughout the world. Rapid identification of bloodstream pathogens is a laboratory practice that supports strategies for rapid transition to direct targeted therapy by providing for timely and effective patient care. In fact, the more rapidly that appropriate antimicrobials are prescribed, the lower the mortality for patients with sepsis. Rapid identification methods may have multiple positive impacts on patient outcomes, including reductions in mortality, morbidity, hospital lengths of stay, and antibiotic use. In addition, the strategy can reduce the cost of care for patients with BSIs. Objectives. The purpose of this review is to evaluate the evidence for the effectiveness of three rapid diagnostic practices in decreasing the time to targeted therapy for hospitalized patients with BSIs. The review was performed by applying the Centers for Disease Control and Prevention's (CDC's) Laboratory Medicine Best Practices Initiative (LMBP) systematic review methods for quality improvement (QI) practices and translating the results into evidence-based guidance (R. H. Christenson et al., Clin Chem 57:816–825, 2011, http://dx.doi.org/10.1373/clinchem.2010.157131). Search strategy. A comprehensive literature search was conducted to identify studies with measurable outcomes. A search of three electronic bibliographic databases (PubMed, Embase, and CINAHL), databases containing “gray” literature (unpublished academic, government, or industry evidence not governed by commercial publishing) (CIHI, NIHR, SIGN, and other databases), and the Cochrane database for English-language articles published between 1990 and 2011 was conducted in July 2011. Dates of search. The dates of our search were from 1990 to July 2011. Selection criteria. Animal studies and non-English publications were excluded. The search contained the following medical subject headings: bacteremia; bloodstream infection; time factors; health care costs; length of stay; morbidity; mortality; antimicrobial therapy; rapid molecular techniques, polymerase chain reaction (PCR); in situ hybridization, fluorescence; treatment outcome; drug therapy; patient care team; pharmacy service, hospital; hospital information systems; Gram stain; pharmacy service; and spectrometry, mass, matrix-assisted laser desorption-ionization. Phenotypic as well as the following key words were searched: targeted therapy; rapid identification; rapid; Gram positive; Gram negative; reduce(ed); cost(s); pneumoslide; PBP2; tube coagulase; matrix-assisted laser desorption/ionization time of flight; MALDI TOF; blood culture; EMR; electronic reporting; call to provider; collaboration; pharmacy; laboratory; bacteria; yeast; ICU; and others. In addition to the electronic search being performed, a request for unpublished quality improvement data was made to the clinical laboratory community. Main results. Rapid molecular testing with direct communication significantly improves timeliness compared to standard testing. Rapid phenotypic techniques with direct communication likely improve the timeliness of targeted therapy. Studies show a significant and homogeneous reduction in mortality associated with rapid molecular testing combined with direct communication. Authors' conclusions. No recommendation is made for or against the use of the three assessed practices of this review due to insufficient evidence. The overall strength of evidence is suggestive; the data suggest that each of these three practices has the potential to improve the time required to initiate targeted therapy and possibly improve other patient outcomes, such as mortality. The meta-analysis results suggest that the implementation of any of the three practices may be more effective at increasing timeliness to targeted therapy than routine microbiology techniques for identification of the microorganisms causing BSIs. Based on the included studies, results for all three practices appear applicable across multiple microorganisms, including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-sensitive S. aureus (MSSA), Candida species, and Enterococcus species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of 2 Commercially Available Next-Generation Sequencing Platforms in Oncology

              This study compares reports from 2 next-generation sequencing tests to determine the level of concordance between platforms.
                Bookmark

                Author and article information

                Journal
                Acad Pathol
                Acad Pathol
                APC
                spapc
                Academic Pathology
                SAGE Publications (Sage CA: Los Angeles, CA )
                2374-2895
                14 January 2020
                Jan-Dec 2020
                : 7
                : 2374289519898857
                Affiliations
                [1 ]Department of Pathology, Beaumont Health, Royal Oak, MI, USA
                [2 ]Oakland University William Beaumont School of Medicine, Rochester, MI, USA
                [3 ]Department of Occupational and Environmental Health Sciences, West Virginia University School of Public Health, Morgantown, WV, USA
                [4 ]Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
                [5 ]Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
                [6 ]Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
                Author notes
                [*]Barbara S. Ducatman, Department of Pathology, Beaumont Health Clinical Pathology MC 306, 3601 W. 13 Mile Rd, Royal Oak, MI 48073, USA. Email: barbara.ducatman@ 123456beaumont.edu
                Article
                10.1177_2374289519898857
                10.1177/2374289519898857
                6961144
                31984223
                9d6a3984-5b2e-4a79-a2f2-efc67efd789c
                © The Author(s) 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License ( https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 26 September 2019
                : 11 November 2019
                : 04 December 2019
                Categories
                Special Article
                Custom metadata
                January-December 2020
                ts3

                value,diagnostic error,diagnostic management,precision medicine,utilization management,implementation and decision sciences,healthcare outcomes and costs,residency training

                Comments

                Comment on this article