32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      4-Aryl-4 H-naphthopyrans derivatives: one-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A series of 2-amino-4-aryl-4 H-benzo[h or f]chromene-3-carbonitrile derivatives were synthesized and evaluated for inhibition of Src kinase and cell proliferation in breast carcinoma (BT-20) cell lines.

          Methods

          The one-pot, three-component reaction of α or β-naphthol, malonitrile and an aromatic aldehyde in the presence of diammonium hydrogen phosphate was afforded the corresponding 2-amino-4-aryl-4 H-benzo[h or f]chromene-3-carbonitrile derivatives, All target compounds were evaluated for inhibition of Src kinase and cell proliferation in breast carcinoma (BT-20) cell lines.

          Results

          Among all tested compounds, unsubstituted 4-phenyl analog 4a showed Src kinas inhibitory effect with IC 50 value of 28.1 μM and was the most potent compound in this series. In general, the compounds were moderately active against BT-20. 3-Nitro-phenyl 4e and 3-pyridinyl 4h derivatives inhibited the cell proliferation of BT-20 cells by 33% and 31.5%, respectively, and found to be more potent compared to doxorubicin (25% inhibition of cell growth).

          Conclusion

          The data indicate that 4-aryl-4 H-naphthopyrans scaffold has the potential to be optimized further for designing more potent Src kinase inhibitors and/or anticancer lead compounds.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          A renaissance for SRC.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor.

            Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction and regulation of epithelial-mesenchymal transitions.

              Herein we discuss the factors that bring about the transformation of epithelial cells into cells of fibroblastic phenotype. This type of transformation, referred to as epithelium-to-mesenchyme transition (EMT), allows cells to dissociate from the epithelial tissue from which they originate and to migrate freely. EMT is therefore thought to play a fundamental role during the early steps of invasion and metastasis of carcinoma cells. Among biological agents which have been identified as inducers of EMT are a number of cytokines and extracellular matrix macromolecules. The coordinated changes in cell morphology, associated with the induction of cell motility and the disruption of intercellular junctions, are the consequence of a signaling cascade emanating from the plasma membrane and leading to changes in gene expression. Understanding the mechanisms regulating EMT of normal and transformed epithelial cells may offer new perspectives for designing therapies for the treatment of metastatic cancers of epithelial origin.
                Bookmark

                Author and article information

                Journal
                Daru
                Daru
                DARU Journal of Pharmaceutical Sciences
                BioMed Central
                1560-8115
                2008-2231
                2012
                26 December 2012
                : 20
                : 1
                : 100
                Affiliations
                [1 ]Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
                [2 ]Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
                Article
                2008-2231-20-100
                10.1186/2008-2231-20-100
                3599540
                23351304
                9d6cfc60-2f51-4647-977a-736f34658a7e
                Copyright ©2012 Rafinejad et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 July 2012
                : 21 December 2012
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                anticancer activity,carbonitrile,naphthopyrans,protein kinase,src kinase

                Comments

                Comment on this article