9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Loss of Hsp70 in Drosophila Is Pleiotropic, With Effects on Thermotolerance, Recovery From Heat Shock and Neurodegeneration

      ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.

          Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hsp70 chaperones: Cellular functions and molecular mechanism

            Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular chaperones in cellular protein folding.

              F U Hartl (1996)
              The folding of many newly synthesized proteins in the cell depends on a set of conserved proteins known as molecular chaperones. These prevent the formation of misfolded protein structures, both under normal conditions and when cells are exposed to stresses such as high temperature. Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                January 26 2006
                January 2006
                January 2006
                October 03 2005
                : 172
                : 1
                : 275-286
                Article
                10.1534/genetics.105.048793
                1456155
                16204210
                9d74f7e9-149c-4068-a401-296c9fa6e3b8
                © 2005
                History

                Comments

                Comment on this article