271
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

      review-article
      1 , , 2 , 1
      Brain Structure & Function
      Springer-Verlag

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies.

          Related collections

          Most cited references213

          • Record: found
          • Abstract: found
          • Article: not found

          The amygdala modulates the consolidation of memories of emotionally arousing experiences.

          Converging findings of animal and human studies provide compelling evidence that the amygdala is critically involved in enabling us to acquire and retain lasting memories of emotional experiences. This review focuses primarily on the findings of research investigating the role of the amygdala in modulating the consolidation of long-term memories. Considerable evidence from animal studies investigating the effects of posttraining systemic or intra-amygdala infusions of hormones and drugs, as well as selective lesions of specific amygdala nuclei, indicates that (a) the amygdala mediates the memory-modulating effects of adrenal stress hormones and several classes of neurotransmitters; (b) the effects are selectively mediated by the basolateral complex of the amygdala (BLA); (c) the influences involve interactions of several neuromodulatory systems within the BLA that converge in influencing noradrenergic and muscarinic cholinergic activation; (d) the BLA modulates memory consolidation via efferents to other brain regions, including the caudate nucleus, nucleus accumbens, and cortex; and (e) the BLA modulates the consolidation of memory of many different kinds of information. The findings of human brain imaging studies are consistent with those of animal studies in suggesting that activation of the amygdala influences the consolidation of long-term memory; the degree of activation of the amygdala by emotional arousal during encoding of emotionally arousing material (either pleasant or unpleasant) correlates highly with subsequent recall. The activation of neuromodulatory systems affecting the BLA and its projections to other brain regions involved in processing different kinds of information plays a key role in enabling emotionally significant experiences to be well remembered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurobiology of emotion perception II: Implications for major psychiatric disorders.

            To date, there has been little investigation of the neurobiological basis of emotion processing abnormalities in psychiatric populations. We have previously discussed two neural systems: 1) a ventral system, including the amygdala, insula, ventral striatum, ventral anterior cingulate gyrus, and prefrontal cortex, for identification of the emotional significance of a stimulus, production of affective states, and automatic regulation of emotional responses; and 2) a dorsal system, including the hippocampus, dorsal anterior cingulate gyrus, and prefrontal cortex, for the effortful regulation of affective states and subsequent behavior. In this critical review, we have examined evidence from studies employing a variety of techniques for distinct patterns of structural and functional abnormalities in these neural systems in schizophrenia, bipolar disorder, and major depressive disorder. In each psychiatric disorder, the pattern of abnormalities may be associated with specific symptoms, including emotional flattening, anhedonia, and persecutory delusions in schizophrenia, prominent mood swings, emotional lability, and distractibility in bipolar disorder during depression and mania, and with depressed mood and anhedonia in major depressive disorder. We suggest that distinct patterns of structural and functional abnormalities in neural systems important for emotion processing are associated with specific symptoms of schizophrenia and bipolar and major depressive disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis.

              Integration of the hypothalamo-pituitary-adrenal stress response occurs by way of interactions between stress-sensitive brain circuitry and neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN). Stressors involving an immediate physiologic threat ('systemic' stressors) are relayed directly to the PVN, probably via brainstem catecholaminergic projections. By contrast, stressors requiring interpretation by higher brain structures ('processive' stressors) appear to be channeled through limbic forebrain circuits. Forebrain limbic sites connect with the PVN via interactions with GABA-containing neurons in the bed nucleus of the stria terminalis, preoptic area and hypothalamus. Thus, final elaboration of processive stress responses is likely to involve modulation of PVN GABAergic tone. The functional and neuroanatomical data obtained suggest that disease processes involving inappropriate stress control involve dysfunction of processive stress pathways.
                Bookmark

                Author and article information

                Contributors
                +1-301-5941367 , +1-301-5949959 , drevetsw@mail.nih.gov
                Journal
                Brain Struct Funct
                Brain Structure & Function
                Springer-Verlag (Berlin/Heidelberg )
                1863-2653
                1863-2661
                13 August 2008
                September 2008
                : 213
                : 1-2
                : 93-118
                Affiliations
                [1 ]Section on Neuroimaging in Mood and Anxiety Disorders, National Institute of Mental Health, National Institutes of Health (NIH/NIMH DIRP), 15K North Dr., Room 210, Bethesda, MD 20892 USA
                [2 ]Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110 USA
                Article
                189
                10.1007/s00429-008-0189-x
                2522333
                18704495
                9d81be3e-f313-4232-bb21-90a69facdecd
                © The Author(s) 2008
                History
                : 23 January 2008
                : 20 June 2008
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2008

                Neurology
                Neurology

                Comments

                Comment on this article