114
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The archaea that can be readily cultivated in the laboratory are only a small fraction of the total diversity that exists in nature. Although molecular ecology methods, such as metagenomic sequencing, can provide valuable information independent of cell cultivation, it is only through cultivation-based experiments that they may be fully characterized, both for their physiological and ecological properties. Here, we report our efforts towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods. Initially, cells were retrieved from the sediment samples through a cell extraction procedure and the sediment-free mixed cells were then divided into different size-range fractions by successive filtration through 0.8 µm, 0.6 µm and 0.2 µm membranes. Archaeal 16S rRNA gene analyses indicated noticeable retention of different archaeal groups in different fractions. For each fraction, supplementation with a variety of defined substrates (e.g., methane, sulfate, and lignin) and stepwise dilutions led to highly active enrichment cultures of several archaeal groups with Bathyarchaeota most prominently enriched. Finally, using a roll-bottle technique, three co-cultures consisting of Bathyarchaeota (subgroup-8) and a bacterial species affiliated with either Pseudomonas or Glutamicibacter were obtained. Our results demonstrate that a combination of cell extraction, size fractionation, and roll-bottle isolation methods could be a useful protocol for the successful enrichment and isolation of numerous slow-growing archaeal groups from marine sediments.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s42995-021-00092-0.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              16S ribosomal DNA amplification for phylogenetic study.

              A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.
                Bookmark

                Author and article information

                Contributors
                fengpingw@sjtu.edu.cn
                Journal
                Mar Life Sci Technol
                Mar Life Sci Technol
                Marine Life Science & Technology
                Springer Singapore (Singapore )
                2096-6490
                2662-1746
                3 March 2021
                3 March 2021
                May 2021
                : 3
                : 2
                : 231-242
                Affiliations
                [1 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, , Shanghai Jiao Tong University, ; Shanghai, 200240 China
                [2 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, School of Oceanography, , Shanghai Jiao Tong University, ; Shanghai, 200240 China
                Article
                92
                10.1007/s42995-021-00092-0
                10077295
                37073339
                9d85eece-11b9-46a0-9e33-89c3578c89df
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 June 2020
                : 12 January 2021
                Categories
                Research Paper
                Custom metadata
                © Ocean University of China 2021

                microbial cultivation,marine sediments,uncultivated archaea,co-culture,bathyarchaeota

                Comments

                Comment on this article