35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zinc Transporters, Mechanisms of Action and Therapeutic Utility: Implications for Type 2 Diabetes Mellitus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zinc is an essential trace element that plays a vital role in maintaining many biological processes and cellular homeostasis. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins. Evidence on the role of these proteins in type 2 diabetes mellitus (T2DM) is now emerging. Zinc plays a key role in the synthesis, secretion and action of insulin in both physiological and pathophysiological states. Moreover, recent studies highlight zinc's dynamic role as a “cellular second messenger” in the control of insulin signaling and glucose homeostasis. This suggests that zinc plays an unidentified role as a novel second messenger that augments insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies novel risk loci for type 2 diabetes.

          Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes.

            Type 1 diabetes (T1D) results from progressive loss of pancreatic islet mass through autoimmunity targeted at a diverse, yet limited, series of molecules that are expressed in the pancreatic beta cell. Identification of these molecular targets provides insight into the pathogenic process, diagnostic assays, and potential therapeutic agents. Autoantigen candidates were identified from microarray expression profiling of human and rodent pancreas and islet cells and screened with radioimmunoprecipitation assays using new-onset T1D and prediabetic sera. A high-ranking candidate, the zinc transporter ZnT8 (Slc30A8), was targeted by autoantibodies in 60-80% of new-onset T1D compared with <2% of controls and <3% type 2 diabetic and in up to 30% of patients with other autoimmune disorders with a T1D association. ZnT8 antibodies (ZnTA) were found in 26% of T1D subjects classified as autoantibody-negative on the basis of existing markers [glutamate decarboxylase (GADA), protein tyrosine phosphatase IA2 (IA2A), antibodies to insulin (IAA), and islet cytoplasmic autoantibodies (ICA)]. Individuals followed from birth to T1D showed ZnT8A as early as 2 years of age and increasing levels and prevalence persisting to disease onset. ZnT8A generally emerged later than GADA and IAA in prediabetes, although not in a strict order. The combined measurement of ZnT8A, GADA, IA2A, and IAA raised autoimmunity detection rates to 98% at disease onset, a level that approaches that needed to detect prediabetes in a general pediatric population. The combination of bioinformatics and molecular engineering used here will potentially generate other diabetes autoimmunity markers and is also broadly applicable to other autoimmune disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zinc transporters and the cellular trafficking of zinc.

              David Eide (2006)
              Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.
                Bookmark

                Author and article information

                Journal
                J Nutr Metab
                J Nutr Metab
                JNUME
                Journal of Nutrition and Metabolism
                Hindawi Publishing Corporation
                2090-0724
                2090-0732
                2012
                12 December 2012
                : 2012
                : 173712
                Affiliations
                1School of Health Sciences, University of Ballarat, University Drive, Mount Helen, VIC 3350, Australia
                2Collaborative Research Network, University of Ballarat, Mount Helen, VIC 3350, Australia
                Author notes

                Academic Editor: Samir Samman

                Article
                10.1155/2012/173712
                3530793
                23304467
                9d88d7e2-6fd4-4b25-a299-2c388f98b42c
                Copyright © 2012 Stephen A. Myers et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 September 2012
                : 7 November 2012
                : 7 November 2012
                Categories
                Review Article

                Nutrition & Dietetics
                Nutrition & Dietetics

                Comments

                Comment on this article