19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Precision Medicine: From Science To Value

      1 , 2
      Health Affairs
      Health Affairs (Project Hope)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Precision medicine is making an impact on patients, health care delivery systems, and research participants in ways that were only imagined fifteen years ago when the human genome was first sequenced. Discovery of disease-causing and drug-response genetic variants has accelerated, while adoption into clinical medicine has lagged. We define precision medicine and the stakeholder community required to enable its integration into research and health care. We explore the intersection of data science, analytics, and precision medicine in the formation of health systems that carry out research in the context of clinical care and that optimize the tools and information used to deliver improved patient outcomes. We provide examples of real-world impact and conclude with a policy and economic agenda necessary for the adoption of this new paradigm of health care both in the United States and globally.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Carrier testing for severe childhood recessive diseases by next-generation sequencing.

          Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design and Anticipated Outcomes of the eMERGE-PGx Project: A Multi-Center Pilot for Pre-Emptive Pharmacogenomics in Electronic Health Record Systems

            We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the eMERGE and PGRN consortia, has three objectives : 1) Deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1–3 year timeframe across several clinical sites; 2) Integrate well-established clinically-validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and assess process and clinical outcomes of implementation; and 3) Develop a repository of pharmacogenetic variants of unknown significance linked to a repository of EHR-based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site-specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to manage incidental findings, and patient and clinician education methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic medicine: a decade of successes, challenges, and opportunities.

              Genomic medicine--an aspirational term 10 years ago--is gaining momentum across the entire clinical continuum from risk assessment in healthy individuals to genome-guided treatment in patients with complex diseases. We review the latest achievements in genome research and their impact on medicine, primarily in the past decade. In most cases, genomic medicine tools remain in the realm of research, but some tools are crossing over into clinical application, where they have the potential to markedly alter the clinical care of patients. In this State of the Art Review, we highlight notable examples including the use of next-generation sequencing in cancer pharmacogenomics, in the diagnosis of rare disorders, and in the tracking of infectious disease outbreaks. We also discuss progress in dissecting the molecular basis of common diseases, the role of the host microbiome, the identification of drug response biomarkers, and the repurposing of drugs. The significant challenges of implementing genomic medicine are examined, along with the innovative solutions being sought. These challenges include the difficulty in establishing clinical validity and utility of tests, how to increase awareness and promote their uptake by clinicians, a changing regulatory and coverage landscape, the need for education, and addressing the ethical aspects of genomics for patients and society. Finally, we consider the future of genomics in medicine and offer a glimpse of the forces shaping genomic medicine, such as fundamental shifts in how we define disease, how medicine is delivered to patients, and how consumers are managing their own health and affecting change.
                Bookmark

                Author and article information

                Journal
                Health Affairs
                Health Affairs
                Health Affairs (Project Hope)
                0278-2715
                1544-5208
                May 2018
                May 2018
                : 37
                : 5
                : 694-701
                Affiliations
                [1 ]Geoffrey S. Ginsburg () is director of the Duke Center for Applied Genomics and Precision Medicine, Duke University, in Durham, North Carolina.
                [2 ]Kathryn A. Phillips is a professor of health economics and health services research at the University of California San Francisco.
                Article
                10.1377/hlthaff.2017.1624
                5989714
                29733705
                9d96a16f-b113-441f-a543-9d22ca557bfb
                © 2018
                History

                Comments

                Comment on this article