+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      RNase footprinting demonstrates antigenomic hepatitis delta virus ribozyme structural rearrangement as a result of self-cleavage reaction

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Hepatitis delta virus (HDV) is a satellite virus of hepatitis B. During viral replication the 1700-nucleotide-long genomic RNA and its complement, the antigenomic RNA, undergo self-cleavage catalyzed by internal ribozyme motifs that are essential for propagation of the virus in vivo. These self-cleavage activities are provided by 85-nucleotide-long sequence elements, the genomic and antigenomic forms of HDV ribozyme. Recently four permuted variants of the antigenomic HDV cis-ribozyme with a self-cleavage site located at the 5' proximity, in the middle, or nearby the 3' end of the molecule were constructed and synthesized. These constructs exhibit equal activity, a bi-phasic kinetics of self-cleavage reaction and reaction products with low and high stability. We have used ribonuclease probing to footprint the structures of uncleaved and post-cleaved forms of the antigenomic HDV ribozymes in solution. Uncleaved ribozymes, associated and individual products of the self-cleavage reaction were analyzed using ribonuclease and Fe(II)-EDTA protection assays to reveal the differences in the structure of pre- and post-cleaved antigenomic HDV ribozyme in solution.


          Our findings demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, in contrast to minor conformational switch observed in crystals of the genomic form. This study indicates that changes in the structure of stem P1 and stem P4 are minor, those of the region ascribed to stem P2, stem P3 and loop l3 are dramatic, while stem P1.1 results from the self-cleavage reaction.


          Our data agree with the structure of post-cleaved and disagree with that of pre-cleaved forms of HDV ribozyme published elsewhere.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of a hepatitis delta virus ribozyme.

          The self-cleaving ribozyme of the hepatitis delta virus (HDV) is the only catalytic RNA known to be required for the viability of a human pathogen. We obtained crystals of a 72-nucleotide, self-cleaved form of the genomic HDV ribozyme that diffract X-rays to 2.3 A resolution by engineering the RNA to bind a small, basic protein without affecting ribozyme activity. The co-crystal structure shows that the compact catalytic core comprises five helical segments connected as an intricate nested double pseudoknot. The 5'-hydroxyl leaving group resulting from the self-scission reaction is buried deep within an active-site cleft produced by juxtaposition of the helices and five strand-crossovers, and is surrounded by biochemically important backbone and base functional groups in a manner reminiscent of protein enzymes.
            • Record: found
            • Abstract: found
            • Article: not found

            A conformational switch controls hepatitis delta virus ribozyme catalysis.

            Ribozymes enhance chemical reaction rates using many of the same catalytic strategies as protein enzymes. In the hepatitis delta virus (HDV) ribozyme, site-specific self-cleavage of the viral RNA phosphodiester backbone requires both divalent cations and a cytidine nucleotide. General acid-base catalysis, substrate destabilization and global and local conformational changes have all been proposed to contribute to the ribozyme catalytic mechanism. Here we report ten crystal structures of the HDV ribozyme in its pre-cleaved state, showing that cytidine is positioned to activate the 2'-OH nucleophile in the precursor structure. This observation supports its proposed role as a general base in the reaction mechanism. Comparison of crystal structures of the ribozyme in the pre- and post-cleavage states reveals a significant conformational change in the RNA after cleavage and that a catalytically critical divalent metal ion from the active site is ejected. The HDV ribozyme has remarkable chemical similarity to protein ribonucleases and to zymogens for which conformational dynamics are integral to biological activity. This finding implies that RNA structural rearrangements control the reactivity of ribozymes and ribonucleoprotein enzymes.
              • Record: found
              • Abstract: found
              • Article: not found

              A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA.

               A. Perrotta,  M Been (1991)
              Hepatitis delta virus genomic and antigenomic RNAs contain a self-cleavage site hypothesized to function in processing the viral RNA during replication. Self-cleavage requires only a divalent cation and is mediated at the genomic site by a sequence of less than 85 nucleotides. We propose that the genomic self-cleaving sequence element and a corresponding sequence from the anti-genomic RNA could generate related secondary structures. The region of the antigenomic sequence, predicted from the proposed structure, was synthesized and shown to be sufficient for self-cleavage. Evidence for two stems which form a tertiary interaction was obtained by site-specific mutagenesis of the antigenomic sequence. Efficient self-cleavage in 10 M formamide or 5 M urea, also a property of the genomic sequence, was dependent on base-pairing in both stems. But in the absence of denaturants, the stem distal to the site of cleavage was not required, suggesting that the tertiary interaction stabilizes the structure required for self-cleavage.

                Author and article information

                BMC Res Notes
                BMC Research Notes
                BioMed Central
                16 May 2008
                : 1
                : 15
                [1 ]Russian Cardiology Research and Production Center, 121552 Moscow, Russia
                Copyright © 2008 Savochkina et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Short Report



                Comment on this article