20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular Systematics of Mouse Opossums (Didelphidae: Marmosa): Assessing Species Limits using Mitochondrial DNA Sequences, with Comments on Phylogenetic Relationships and Biogeography

      , ,
      American Museum Novitates
      American Museum of Natural History (BioOne sponsored)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          New developments in museum-based informatics and applications in biodiversity analysis.

          Information from natural history collections (NHCs) about the diversity, taxonomy and historical distributions of species worldwide is becoming increasingly available over the Internet. In light of this relatively new and rapidly increasing resource, we critically review its utility and limitations for addressing a diverse array of applications. When integrated with spatial environmental data, NHC data can be used to study a broad range of topics, from aspects of ecological and evolutionary theory, to applications in conservation, agriculture and human health. There are challenges inherent to using NHC data, such as taxonomic inaccuracies and biases in the spatial coverage of data, which require consideration. Promising research frontiers include the integration of NHC data with information from comparative genomics and phylogenetics, and stronger connections between the environmental analysis of NHC data and experimental and field-based tests of hypotheses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SPECIATION IN MAMMALS AND THE GENETIC SPECIES CONCEPT.

            We define a genetic species as a group of genetically compatible interbreeding natural populations that is genetically isolated from other such groups. This focus on genetic isolation rather than reproductive isolation distinguishes the Genetic Species Concept from the Biological Species Concept. Recognition of species that are genetically isolated (but not reproductively isolated) results in an enhanced understanding of biodiversity and the nature of speciation as well as speciation-based issues and evolution of mammals. We review criteria and methods for recognizing species of mammals and explore a theoretical scenario, the Bateson-Dobzhansky-Muller (BDM) model, for understanding and predicting genetic diversity and speciation in mammals. If the BDM model is operating in mammals, then genetically defined phylogroups would be predicted to occur within species defined by morphology, and phylogroups experiencing stabilizing selection will evolve genetic isolation without concomitant morphological diversification. Such species will be undetectable using classical skin and skull morphology (Morphological Species Concept). Using cytochrome-b data from sister species of mammals recognized by classical morphological studies, we estimated the number of phylogroups that exist within mammalian species and hypothesize that there will be >2,000 currently unrecognized species of mammals. Such an underestimation significantly affects conclusions on the nature of speciation in mammals, barriers associated with evolution of genetic isolation, estimates of biodiversity, design of conservation initiatives, zoonoses, and so on. A paradigm shift relative to this and other speciation-based issues will be needed. Data that will be effective in detecting these "morphologically cryptic genetic species" are genetic, especially DNA-sequence data. Application of the Genetic Species Concept uses genetic data from mitochondrial and nuclear genomes to identify species and species boundaries, the extent to which the integrity of the gene pool is protected, nature of hybridization (if present), and introgression. Genetic data are unique in understanding species because the use of genetic data 1) can quantify genetic divergence from different aspects of the genome (mitochondrial and nuclear genes, protein coding genes, regulatory genes, mobile DNA, microsatellites, chromosomal rearrangements, heterochromatin, etc.); 2) can provide divergence values that increase with time, providing an estimate of time since divergence; 3) can provide a population genetics perspective; 4) is less subject to convergence and parallelism relative to other sets of characters; 5) can identify monophyly, sister taxa, and presence or absence of introgression; and 6) can accurately identify hybrid individuals (kinship and source of hybrid individuals, F(1)s, backcrosses, direction of hybridization, and in concert with other data identify which hybrids are sterile or fertile). The proposed definition of the Genetic Species Concept is more compatible with a description of biodiversity of mammals than is "reproductively isolated species." Genetic profiles of mammalian species will result in a genetic description of species and mammalian diversity, and such studies are being accelerated by technological advances that reduce cost and increase speed and efficiency of generating genetic data. We propose that this genetic revolution remain museum- and voucher specimen-based and that new names are based on a holotype (including associated tissues) deposited in an accredited museum.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Historical Biogeography and Patterns of Differentiation within the South American Avifauna: Areas of Endemism

                Bookmark

                Author and article information

                Journal
                American Museum Novitates
                American Museum Novitates
                American Museum of Natural History (BioOne sponsored)
                0003-0082
                June 25 2010
                June 25 2010
                : 3692
                :
                : 1-22
                Article
                10.1206/708.1
                9d9a69a3-a994-4c7b-834d-b70559ed2e7a
                © 2010
                History

                Comments

                Comment on this article