51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new Comptonization model for low-magnetized accreting neutron stars in low mass X-ray binaries

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We developed a new model for the X-ray spectral fitting \xspec package which takes into account the effects of both thermal and dynamical (i.e. bulk) Comptonization. The model consists of two components: one is the direct blackbody-like emission due to seed photons which are not subjected to effective Compton scattering, while the other one is a convolution of the Green's function of the energy operator with a blackbody-like seed photon spectrum. When combined thermal and bulk effects are considered, the analytic form of the Green's function may be obtained as a solution of the diffusion Comptonization equation. Using data from the BeppoSAX, INTEGRAL and RXTE satellites, we test our model on the spectra of a sample of six persistently low magnetic field bright neutron star Low Mass X-ray Binaries, covering three different spectral states. Particular attention is given to the transient powerlaw-like hard X-ray (> 30 keV) tails that we interpret in the framework of the bulk motion Comptonization process. We show that the values of the best-fit delta-parameter, which represents the importance of bulk with respect to thermal Comptonization, can be physically meaningful and can at least qualitatively describe the physical conditions of the environment in the innermost part of the system. Moreover, we show that in fitting the thermal Comptonization spectra to the X-ray spectra of these systems, the best-fit parameters of our model are in excellent agreement with those of COMPTT, a broadly used and well established XSPEC model.

          Related collections

          Author and article information

          Journal
          19 February 2008
          Article
          10.1086/587162
          0802.2639
          9d9ac509-0be7-4584-b402-c39f5cec12e2

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          15 pages, 8 figures, accepted for publication in ApJ
          astro-ph

          Comments

          Comment on this article