12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators

      , ,
      Journal of Comparative Physiology A
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Neural basis of rhythmic behavior in animals.

          F Delcomyn (1980)
          Timing of the repetitive movements that constitute any rhythmic behavior is regulated by intrinsic properties of the central nervous system rather than by sensory feedback from moving parts of the body. Evidence of this permits resolution of the long-standing controversy over the neural basis of rhythmic behavior and aids in the identification of this mechanism as a general principle of neural organization applicable to all animals with central nervous systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters.

            The neurotransmitters mediating the synaptic interactions among the neurons of the pyloric system of the stomatogastric ganglion (STG) of the lobster, Panulirus interruptus, were examined using a combination of electrophysiological, pharmacological, and biochemical techniques. Iontophoretically applied L-glutamate inhibited all motor neurons of the pyloric system. This inhibitory response was blocked by low concentrations of picrotoxin but unaffected by atropine. The anterior burster (AB) interneuron, pyloric dilator (PD) motor neurons, and ventricular dilator (VD) motor neuron were depolarized and excited by iontophoretically applied acetylcholine (ACh). The lateral pyloric (LP) and pyloric (PY) constrictor motor neurons were inhibited by ACh and by the cholinergic agonist, carbachol. These inhibitory cholinergic responses were blocked by atropine but not by picrotoxin. The inhibitory postsynaptic potentials (IPSPs) evoked by the constrictor motor neurons were blocked by picrotoxin but not by atropine. Taken together with previously published data (15, 18), this suggests that the constrictor motor neurons release glutamate at both their excitatory neuromuscular junctions and their inhibitory intraganglionic junctions. The lucifer yellow photoinactivation technique (27) was used to study separately the neurotransmitters released by the electrically coupled PD and AB neurons. The AB-evoked IPSPs were blocked by picrotoxin but not by atropine. The PD-evoked IPSPs were blocked by atropine and other muscarinic antagonists but not by picrotoxin. Somata of PD neurons contained choline acetyltransferase (CAT) activity, but somata of AB neurons contained no detectable CAT activity. On the basis of the data in this paper and previously published data (17, 18), we conclude that the PD neurons release ACh at both their excitatory neuromuscular junctions and their inhibitory intraganglionic connections. Although the AB neuron is electrically coupled to the PD neurons, the AB neuron is not cholinergic. Glutamate is a likely transmitter candidate for the AB neuron. These data show that electrically coupled neurons can release different transmitters. Furthermore, these data show that an IPSP can be the result of the combined actions of two different neurotransmitters, each released from a different neuron. The functional consequences of these conclusions are explored in the following papers (9, 22).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oscillatory neural networks.

              Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG, while emphasizing the fact that for this system sensory feedback plays a larger role than in most other CPGs. Most neural oscillators will probably fall on some continuum between those like insect flight, which need and use a large amount of phasic feedback, and those that can oscillate in a near-normal manner without it.
                Bookmark

                Author and article information

                Journal
                Journal of Comparative Physiology A
                J. Comp. Physiol.
                Springer Nature America, Inc
                0340-7594
                1432-1351
                1988
                1988
                : 163
                : 6
                : 715-727
                Article
                10.1007/BF00604049
                9da0ac6a-8ace-4931-a09a-006dcd5e96e1
                © 1988
                History

                Comments

                Comment on this article