29
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found

      Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic stress and impaired glucocorticoid receptor (GR) feedback are important factors for the compromised hypothalamic–pituitary–adrenal (HPA) axis activity. We investigated the effects of chronic 21 day isolation of Wistar rats on the extrinsic negative feedback part of HPA axis: hippocampus (HIPPO) and prefrontal cortex (PFC). In addition to serum corticosterone (CORT), we followed GR subcellular localization, GR phosphorylation at serine 232 and serine 246, expression of GR regulated genes: GR, CRF and brain-derived neurotropic factor (BDNF), and activity of c-Jun N-terminal kinase (JNK) and Cdk5 kinases that phosphorylate GR. These parameters were also determined in animals subjected to acute 30 min immobilization, which was taken as ‘normal’ adaptive response to stress. In isolated animals, we found decreased CORT, whereas in animals exposed to acute immobilization, CORT was markedly increased. Even though the GR was predominantly localized in the nucleus of HIPPO and PFC in acute, but not in chronic stress, the expression of GR, CRF, and BDNF genes was similarly regulated under both acute and chronic stresses. Thus, the transcriptional activity of GR under chronic isolation did not seem to be exclusively dependent on high serum CORT levels nor on the subcellular location of the GR protein. Rather, it resulted from the increased Cdk5 activation and phosphorylation of the nuclear GR at serine 232 and the decreased JNK activity reflected in decreased phosphorylation of the nuclear GR at serine 246. Our study suggests that this nuclear isoform of hippocampal and cortical GR may be related to hypocorticism i.e. HPA axis hypoactivity under chronic isolation stress.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.

          In the studies reported here we have examined the role of the medial prefrontal cortex (MpFC) in regulating hypothalamic-pituitary-adrenal (HPA) activity under basal and stressful conditions. In preliminary studies we characterized corticosteroid receptor binding in the rat MpFC. The results revealed high-affinity (Kd approximately 1 nM) binding with a moderate capacity (42.9 +/- 3 fmol/mg) for 3H-aldosterone (with a 50-fold excess of cold RU28362; mineralocorticoid receptor) and high-affinity (Kd approximately 0.5-1.0 nM) binding with higher capacity (183.2 +/- 22 fmol/mg) for 3H-RU 28362 (glucocorticoid receptor). Lesions of the MpFC (cingulate gyrus) significantly increased plasma levels of both adrenocorticotropin (ACTH) and corticosterone (CORT) in response to a 20 min restraint stress. The same lesions had no effect on hormone levels following a 2.5 min exposure to ether. Implants of crystalline CORT into the same region of the MpFC produced a significant decrease in plasma levels of both ACTH and CORT with restraint stress, but again, there was no effect with ether stress. Neither MpFC lesions nor CORT implants had any consistent effect on A.M. or P.M. levels of plasma ACTH or CORT. Manipulations of MpFC function were not associated with changes in the clearance rate for CORT or in corticosteroid receptor densities in the pituitary, hypothalamus, hippocampus, or amygdala. Taken together, these findings suggest that MpFC is a target site for the negative-feedback effects of glucocorticoids on stress-induced HPA activity, and that this effect is dependent upon the nature of the stress.
            • Record: found
            • Abstract: found
            • Article: not found

            p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5.

            Cyclin-dependent kinase 5 (Cdk5) was originally isolated through its structural homology to human Cdc2, a key regulator of cell-cycle progression. In tissue samples from adult mice, Cdk5 protein is found at the highest level in brain, at an intermediate level in testis, and at low or undetectable levels in all other tissues, but brain is the only tissue that shows Cdk5 histone H1 kinase activity. No equivalent kinase activity has been found in tissue culture cell lines despite high levels of Cdk5. This raised the possibility that a Cdk5 regulatory subunit was responsible for the activation of Cdk5 in brain. Here we describe the cloning and characterization of a regulatory subunit for Cdk5 known as p35. p35 displays a neuronal cell-specific pattern of expression, it associates physically with Cdk5 in vivo and activates the Cdk5 kinase. p35 differs from the mammalian cyclins and thus represents a new type of regulatory subunit for cyclin-dependent kinase activity.
              • Record: found
              • Abstract: found
              • Article: not found

              The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory.

              J. Sweatt (2000)
              The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively. The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal.

                Author and article information

                Journal
                J Endocrinol
                JOE
                The Journal of Endocrinology
                BioScientifica (Bristol )
                0022-0795
                1479-6805
                July 2009
                30 April 2009
                : 202
                : 1
                : 87-97
                Affiliations
                [1 ]simpleLaboratory of Molecular Biology and Endocrinology simpleVINCA Institute of Nuclear Sciences PO Box-522-MBE090, 11001, BelgradeSerbia
                [2 ]simpleSchool of Pharmacy simpleUniversity of Manchester Michael Smith Building, Oxford Road, Manchester, M13 9PT, EnglandUK
                [3 ]simpleFaculty of Life Sciences simpleUniversity of Manchester Michael Smith Building, Oxford Road, Manchester, M13 9PT, EnglandUK
                Author notes
                (Correspondence should be addressed to M Krstic-Demonacos; Email: m.k.demonacos@ 123456manchester.ac.uk )
                Article
                JOE080509
                10.1677/JOE-08-0509
                2695659
                19406955
                9da7a1ee-3678-43cf-aa61-c76fd65d6b36
                © 2009 Society for Endocrinology

                This is an Open Access article distributed under the terms of the Society for Endocrinology's Re-use Licence which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2009
                : 30 April 2009
                Funding
                Funded by: Wellcome Trust
                Award ID: 069024
                Funded by: Ministry of Sciences of Serbia
                Award ID: ON143042B
                Categories
                Regular papers

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article

                Related Documents Log