Blog
About

94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The global burden of cancer: priorities for prevention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite decreases in the cancer death rates in high-resource countries, such as the USA, the number of cancer cases and deaths is projected to more than double worldwide over the next 20–40 years. Cancer is now the third leading cause of death, with >12 million new cases and 7.6 million cancer deaths estimated to have occurred globally in 2007 (1). By 2030, it is projected that there will be ∼26 million new cancer cases and 17 million cancer deaths per year. The projected increase will be driven largely by growth and aging of populations and will be largest in low- and medium-resource countries. Under current trends, increased longevity in developing countries will nearly triple the number of people who survive to age 65 by 2050. This demographic shift is compounded by the entrenchment of modifiable risk factors such as smoking and obesity in many low-and medium-resource countries and by the slower decline in cancers related to chronic infections (especially stomach, liver and uterine cervix) in economically developing than in industrialized countries. This paper identifies several preventive measures that offer the most feasible approach to mitigate the anticipated global increase in cancer in countries that can least afford it. Foremost among these are the need to strengthen efforts in international tobacco control and to increase the availability of vaccines against hepatitis B and human papilloma virus in countries where they are most needed.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics, 2002.

           D Parkin,  F Bray,  J Ferlay (2005)
          Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiologic classification of human papillomavirus types associated with cervical cancer.

            Infection with human papilloma virus (HPV) is the main cause of cervical cancer, but the risk associated with the various HPV types has not been adequately assessed. We pooled data from 11 case-control studies from nine countries involving 1918 women with histologically confirmed squamous-cell cervical cancer and 1928 control women. A common protocol and questionnaire were used. Information on risk factors was obtained by personal interviews, and cervical cells were collected for detection of HPV DNA and typing in a central laboratory by polymerase-chain-reaction-based assays (with MY09/MY11 and GP5+/6+ primers). HPV DNA was detected in 1739 of the 1918 patients with cervical cancer (90.7 percent) and in 259 of the 1928 control women (13.4 percent). With the GP5+/6+ primer, HPV DNA was detected in 96.6 percent of the patients and 15.6 percent of the controls. The most common HPV types in patients, in descending order of frequency, were types 16, 18, 45, 31, 33, 52, 58, and 35. Among control women, types 16, 18, 45, 31, 6, 58, 35, and 33 were the most common. For studies using the GP5+/6+ primer, the pooled odds ratio for cervical cancer associated with the presence of any HPV was 158.2 (95 percent confidence interval, 113.4 to 220.6). The odds ratios were over 45 for the most common and least common HPV types. Fifteen HPV types were classified as high-risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82); 3 were classified as probable high-risk types (26, 53, and 66); and 12 were classified as low-risk types (6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, and CP6108). There was good agreement between our epidemiologic classification and the classification based on phylogenetic grouping. In addition to HPV types 16 and 18, types 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 should be considered carcinogenic, or high-risk, types, and types 26, 53, and 66 should be considered probably carcinogenic. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The global health burden of infection-associated cancers in the year 2002.

              Several infectious agents are considered to be causes of cancer in humans. The fraction of the different types of cancer, and of all cancers worldwide and in different regions, has been estimated using several methods; primarily by reviewing the evidence for the strength of the association (relative risk) and the prevalence of infection in different world areas. The estimated total of infection-attributable cancer in the year 2002 is 1.9 million cases, or 17.8% of the global cancer burden. The principal agents are the bacterium Helicobacter pylori (5.5% of all cancer), the human papilloma viruses (5.2%), the hepatitis B and C viruses (4.9%), Epstein-Barr virus (1%), human immunodeficiency virus (HIV) together with the human herpes virus 8 (0.9%). Relatively less important causes of cancer are the schistosomes (0.1%), human T-cell lymphotropic virus type I (0.03%) and the liver flukes (0.02%). There would be 26.3% fewer cancers in developing countries (1.5 million cases per year) and 7.7% in developed countries (390,000 cases) if these infectious diseases were prevented. The attributable fraction at the specific sites varies from 100% of cervix cancers attributable to the papilloma viruses to a tiny proportion (0.4%) of liver cancers (worldwide) caused by liver flukes. Copyright 2006 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Affiliations
                American Cancer Society, Research Department, 250 Williams Street, Northwest, Atlanta, GA 30303-1002, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 404 329 5747; Fax: +1 404 327 6450; Email: michael.thun@ 123456cancer.org
                Journal
                Carcinogenesis
                carcin
                carcin
                Carcinogenesis
                Oxford University Press
                0143-3334
                1460-2180
                January 2010
                24 November 2009
                24 November 2009
                : 31
                : 1
                : 100-110
                2802672
                19934210
                10.1093/carcin/bgp263
                © The Author 2009. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Cancer Prevention

                Oncology & Radiotherapy

                Comments

                Comment on this article