37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration.

          Fluoro-Jade B, like its predecessor Fluoro-Jade, is an anionic fluorescein derivative useful for the histological staining of neurons undergoing degeneration. However, Fluoro-Jade B has an even greater specific affinity for degenerating neurons. This notion is supported by the conspicuous staining of degenerating neuronal elements with minimal background staining. This improved signal-to-noise ratio means that fine neuronal processes including distal dendrites, axons and axon terminals can be more readily detected and documented. Although the staining time and dye concentration are reduced, the method is as rapid, simple and reliable as the original Fluoro-Jade technique. Like Fluoro-Jade, Fluoro-Jade B is compatible with a number of other labeling procedures including immunofluorescent and fluorescent Nissl techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subunit arrangement and function in NMDA receptors.

            Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.

              Rats were implanted with 0.3-mm-diameter dialysis tubing through the hippocampus and subsequently perfused with Ringer's solution at a flow rate of 2 microliter/min. Samples of the perfusate representing the extracellular fluid were collected over 5-min periods and subsequently analyzed for contents of the amino acids glutamate, aspartate, glutamine, taurine, alanine, and serine. Samples were collected before, during, and after a 10-min period of transient complete cerebral ischemia. The extracellular contents of glutamate and aspartate were increased, respectively, eight- and threefold during the ischemic period; the taurine concentration also was increased 2.6-fold. During the same period the extracellular content of glutamine was significantly decreased (to 68% of the control value), whereas the concentrations of alanine and serine did not change significantly during the ischemic period. The concentrations of gamma-aminobutyric acid (GABA) were too low to be measured reliably. It is suggested that the large increase in the content of extracellular glutamate and aspartate in the hippocampus induced by the ischemia may be one of the causal factors in the damage to certain neurons observed after ischemia.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                27 September 2017
                2017
                : 11
                : 288
                Affiliations
                [1] 1GHM Institute of CNS Regeneration (GHMICR), Jinan University , Guangzhou, China
                [2] 2Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
                [3] 3Department of Anatomy, Jinan University School of Medicine , Guangzhou, China
                [4] 4Ministry of Education CNS Regeneration International Collaborative Laboratory, Jinan University , Guangzhou, China
                [5] 5Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong , Hong Kong, China
                [6] 6Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University , Guangzhou, China
                [7] 7Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou, China
                [8] 8Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, IN, United States
                Author notes

                Edited by: Dirk M. Hermann, University of Duisburg-Essen, Germany

                Reviewed by: Ulkan Kilic, Istanbul Medipol University, Turkey; Ertugrul Kilic, Istanbul Medipol University, Turkey

                *Correspondence: Kwok-fai So hrmaskf@ 123456hku.hk Yiwen Ruan tyiwen@ 123456jnu.edu.cn

                These authors have contributed equally to this work.

                Article
                10.3389/fncel.2017.00288
                5623723
                29021742
                9db494f2-d749-47b2-8339-0e62d171aa0b
                Copyright © 2017 Shi, Zhu, Li, Tang, Xiang, Han, Xia, Zeng, Nie, Huang, Tsang, Wang, Lei, Xu, So and Ruan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 July 2017
                : 04 September 2017
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 69, Pages: 16, Words: 9843
                Categories
                Neuroscience
                Original Research

                Neurosciences
                ischemia,lycium barbarum polysaccharides,excitotoxicity,apoptosis,nr2b,nr2a
                Neurosciences
                ischemia, lycium barbarum polysaccharides, excitotoxicity, apoptosis, nr2b, nr2a

                Comments

                Comment on this article