60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Involvement of KSRP in the post-transcriptional regulation of human iNOS expression–complex interplay of KSRP with TTP and HuR

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3′-untranslated region (3′-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3′-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3′-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3′-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide and macrophage function.

            At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HuR and mRNA stability.

              An important mechanism of posttranscriptional gene regulation in mammalian cells is the rapid degradation of messenger RNAs (mRNAs) signaled by AU-rich elements (AREs) in their 3' untranslated regions. HuR, a ubiquitously expressed member of the Hu family of RNA-binding proteins related to Drosophila ELAV, selectively binds AREs and stabilizes ARE-containing mRNAs when overexpressed in cultured cells. This review discusses mRNA decay as a general form of gene regulation, decay signaled by AREs, and the role of HuR and its Hu-family relatives in antagonizing this mRNA degradation pathway. The influence of newly identified protein ligands to HuR on HuR function in both normal and stressed cells may explain how ARE-mediated mRNA decay is regulated in response to environmental change.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                26 August 2005
                : 33
                : 15
                : 4813-4827
                Affiliations
                Department of Pharmacology, Johannes Gutenberg University Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
                1Department of General Internal Medicine, Inselspital-University Hospital Bern CH-3010 Bern, Switzerland
                Author notes
                *To whom correspondence should be addressed. Tel: +49 6131 393 3245; Fax: +49 6131 393 6611; Email: kleinert@ 123456mail.uni-mainz.de

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

                Article
                10.1093/nar/gki797
                1192834
                16126846
                9dcca69a-b701-44b7-996c-4a3ed2564b35
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 16 June 2005
                : 11 August 2005
                : 11 August 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article