131
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapamycin Attenuates the Progression of Tau Pathology in P301S Tau Transgenic Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Altered autophagy contributes to the pathogenesis of Alzheimer’s disease and other tauopathies, for which curative treatment options are still lacking. We have recently shown that trehalose reduces tau pathology in a tauopathy mouse model by stimulation of autophagy. Here, we studied the effect of the autophagy inducing drug rapamycin on the progression of tau pathology in P301S mutant tau transgenic mice. Rapamycin treatment resulted in a significant reduction in cortical tau tangles, less tau hyperphosphorylation, and lowered levels of insoluble tau in the forebrain. The favourable effect of rapamycin on tau pathology was paralleled by a qualitative reduction in astrogliosis. These effects were visible with early preventive or late treatment. We further noted an accumulation of the autophagy associated proteins p62 and LC3 in aged tangle bearing P301S mice that was lowered upon rapamycin treatment. Thus, rapamycin treatment defers the progression of tau pathology in a tauopathy animal model and autophagy stimulation may constitute a therapeutic approach for patients suffering from tauopathies.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator.

          A stereological method for obtaining estimates of the total number of neurons in five major subdivisions of the rat hippocampus is described. The new method, the optical fractionator, combines two recent developments in stereology: a three-dimensional probe for counting neuronal nuclei, the optical disector, and a systematic uniform sampling scheme, the fractionator. The optical disector results in unbiased estimates of neuron number, i.e., estimates that are free of assumptions about neuron size and shape, are unaffected by lost caps and overprojection, and approach the true number of neurons in an unlimited manner as the number of samples is increased. The fractionator involves sampling a known fraction of a structural component. In the case of neuron number, a zero dimensional quantity, it provides estimates that are unaffected by shrinkage before, during, and after processing of the tissue. Because the fractionator involves systematic sampling, it also results in highly efficient estimates. Typically only 100-200 neurons must be counted in an animal to obtain a precision that is compatible with experimental studies. The methodology is compared with those used in earlier works involving estimates of neuron number in the rat hippocampus and a number of new stereological methods that have particular relevance to the quantitative study of the structure of the nervous system are briefly described in an appendix.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alzheimer's disease: strategies for disease modification.

            Alzheimer's disease is the largest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. However, in recent years, several approaches aimed at inhibiting disease progression have advanced to clinical trials. Among these, strategies targeting the production and clearance of the amyloid-beta peptide - a cardinal feature of Alzheimer's disease that is thought to be important in disease pathogenesis - are the most advanced. Approaches aimed at modulating the abnormal aggregation of tau filaments (another key feature of the disease), and those targeting metabolic dysfunction, are also being evaluated in the clinic. This article discusses recent progress with each of these strategies, with a focus on anti-amyloid strategies, highlighting the lessons learned and the challenges that remain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein.

              The identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis. According to light microscopy, many nerve cells in brain and spinal cord were strongly immunoreactive for hyperphosphorylated tau. According to electron microscopy, abundant filaments made of hyperphosphorylated tau protein were present. The majority of filaments resembled the half-twisted ribbons described previously in cases of FTDP-17, with a minority of filaments resembling the paired helical filaments of Alzheimer's disease. Sarkosyl-insoluble tau from brains and spinal cords of transgenic mice ran as a hyperphosphorylated 64 kDa band, the same apparent molecular mass as that of the 383 aa tau isoform in the human tauopathies. Perchloric acid-soluble tau was also phosphorylated at many sites, with the notable exception of serine 214. In the spinal cord, neurodegeneration was present, as indicated by a 49% reduction in the number of motor neurons. No evidence for apoptosis was obtained, despite the extensive colocalization of hyperphosphorylated tau protein with activated MAP kinase family members. The latter may be involved in the hyperphosphorylation of tau.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                7 May 2013
                : 8
                : 5
                : e62459
                Affiliations
                [1 ]Institute of Pathology, University Hospital Basel, Basel, Switzerland
                [2 ]Department of Neurology, University Hospital Basel, Basel, Switzerland
                [3 ]MRC, Laboratory of Molecular Biology, Cambridge, United Kingdom
                [4 ]Neuromuscular Research Centre, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
                Brigham and Women’s Hospital, Harvard Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Critical revision and extension of the drafted manuscript: PC ZS MS LK MG MT. Conceived and designed the experiments: SO GF PC VS MS MG DW. Performed the experiments: SO GF PC VS KB MS DW. Analyzed the data: SO GF PC VS KB MS MG DW. Contributed reagents/materials/analysis tools: PC FC MS MG MT. Wrote the paper: DW SO.

                Article
                PONE-D-13-06629
                10.1371/journal.pone.0062459
                3646815
                23667480
                9ddb2016-d1a0-4bec-9ef1-f1722e40e6d1
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 January 2013
                : 21 March 2013
                Page count
                Pages: 7
                Funding
                MT and DTW are supported by the Swiss National Science Foundation (310030_135214 to MT and 32323B_123812 to D.T.W.), and by the Velux Foundation, Switzerland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Mouse
                Neuroscience
                Molecular Neuroscience
                Neurobiology of Disease and Regeneration
                Neurochemistry
                Medicine
                Neurology
                Dementia
                Alzheimer Disease
                Neurodegenerative Diseases
                Neuropharmacology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article