26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Open Science principles for accelerating trait-based science across the Tree of Life

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Ecology & Evolution
      Springer Science and Business Media LLC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant functional traits have globally consistent effects on competition.

              Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.
                Bookmark

                Author and article information

                Journal
                Nature Ecology & Evolution
                Nat Ecol Evol
                Springer Science and Business Media LLC
                2397-334X
                February 17 2020
                Article
                10.1038/s41559-020-1109-6
                32066887
                9de84ff1-fe8d-4f79-9169-d5887cb75e00
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article