18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying the evidence for biodiversity effects on ecosystem functioning and services.

          Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Landscape ecology: spatial heterogeneity in ecological systems.

            Many ecological phenomena are sensitive to spatial heterogeneity and fluxes within spatial mosaics. Landscape ecology, which concerns spatial dynamics (including fluxes of organisms, materials, and energy) and the ways in which fluxes are controlled within heterogeneous matrices, has provided new ways to explore aspects of spatial heterogeneity and to discover how spatial pattern controls ecological processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dendritic network structure constrains metacommunity properties in riverine ecosystems.

              1. Increasingly, ecologists conceptualize local communities as connected to a regional species pool rather than as isolated entities. By this paradigm, community structure is determined through the relative strengths of dispersal-driven regional effects and local environmental factors. However, despite explicit incorporation of dispersal, metacommunity models and frameworks often fail to capture the realities of natural systems by not accounting for the configuration of space within which organisms disperse. This shortcoming may be of particular consequence in riverine networks which consist of linearly -arranged, hierarchical, branching habitat elements. Our goal was to understand how constraints of network connectivity in riverine systems change the relative importance of local vs. regional factors in structuring communities. 2. We hypothesized that communities in more isolated headwaters of riverine networks would be structured by local forces, while mainstem sections would be structured by both local and regional processes. We examined these hypotheses using a spatially explicit regional analysis of riverine macroinvertebrate communities, focusing on change in community similarity with distance between local communities [i.e., distance-decay relationships; (DDRs)], and the change in environmental similarity with distance. Strong DDRs frequently indicate dispersal-driven dynamics. 3. There was no evidence of a DDR in headwater communities, supporting our hypothesis that dispersal is a weak structuring force. Furthermore, a positive relationship between community similarity and environmental similarity supported dynamics driven by local environmental factors (i.e., species sorting). In mainstem habitats, significant DDRs and community x environment similarity relationships suggested both dispersal-driven and environmental constraints on local community structure (i.e., mass effects). 4. We used species traits to compare communities characterized by low vs. high dispersal taxa. In headwaters, neither strength nor mode (in-network vs. out of network) of dispersal changed our results. However, outcomes in mainstems changed substantially with both dispersal mode and strength, further supporting the hypothesis that regional forces drive community dynamics in mainstems. 5. Our findings demonstrate that the balance of local and regional effects changes depending on location within riverine network with local (environmental) factors dictating community structure in headwaters, and regional (dispersal driven) forces dominating in mainstems.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 May 2016
                2016
                : 6
                : 26352
                Affiliations
                [1 ]Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche , 60131 Ancona, Italy
                [2 ]IFREMER, Centre Brest, REM/EEP/LEP, Institut Carnot Ifremer-EDROME, ZI de la pointe du diable , CS10070, F-29280 Plouzané, France
                [3 ]Department of Life and Environmental Sciences, University of Cagliari , Via Fiorelli 1, 09126 Cagliari, Italy
                [4 ]ISMAR (CNR) , via Gobetti 101, 40129 Bologna, Italy
                [5 ]Stazione Zoologica Anton Dohrn , Villa Comunale, 80121, Naples, Italy
                Author notes
                Article
                srep26352
                10.1038/srep26352
                4876447
                27211908
                9df1fdde-478d-4d19-a9d9-07b891026934
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 March 2015
                : 21 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article