78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DINAMelt web server for nucleic acid melting prediction

      1 , 2 , *

      Nucleic Acids Research

      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The DINAMelt web server simulates the melting of one or two single-stranded nucleic acids in solution. The goal is to predict not just a melting temperature for a hybridized pair of nucleic acids, but entire equilibrium melting profiles as a function of temperature. The two molecules are not required to be complementary, nor must the two strand concentrations be equal. Competition among different molecular species is automatically taken into account. Calculations consider not only the heterodimer, but also the two possible homodimers, as well as the folding of each single-stranded molecule. For each of these five molecular species, free energies are computed by summing Boltzmann factors over every possible hybridized or folded state. For temperatures within a user-specified range, calculations predict species mole fractions together with the free energy, enthalpy, entropy and heat capacity of the ensemble. Ultraviolet (UV) absorbance at 260 nm is simulated using published extinction coefficients and computed base pair probabilities. All results are available as text files and plots are provided for species concentrations, heat capacity and UV absorbance versus temperature. This server is connected to an active research program and should evolve as new theory and software are developed. The server URL is http://www.bioinfo.rpi.edu/applications/hybrid/.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: found
          • Article: not found

          A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics.

           J SantaLucia (1998)
          A unified view of polymer, dumbbell, and oligonucleotide nearest-neighbor (NN) thermodynamics is presented. DNA NN DeltaG degrees 37 parameters from seven laboratories are presented in the same format so that careful comparisons can be made. The seven studies used data from natural polymers, synthetic polymers, oligonucleotide dumbbells, and oligonucleotide duplexes to derive NN parameters; used different methods of data analysis; used different salt concentrations; and presented the NN thermodynamics in different formats. As a result of these differences, there has been much confusion regarding the NN thermodynamics of DNA polymers and oligomers. Herein I show that six of the studies are actually in remarkable agreement with one another and explanations are provided in cases where discrepancies remain. Further, a single set of parameters, derived from 108 oligonucleotide duplexes, adequately describes polymer and oligomer thermodynamics. Empirical salt dependencies are also derived for oligonucleotides and polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding.

            An RNA model system consisting of an oligomer binding to a 4-nt overhang at the 5' end of a hairpin stem provides thermodynamic parameters for helix-helix interfaces. In a sequence-dependent manner, oligomers bind up to 1000-fold more tightly adjacent to the hairpin stem than predicted for binding to a free tetramer at 37 degrees C. For the interface (/) in [formula: see text] additional free energy change, delta delta G 37 degrees, for binding is roughly the nearest-neighbor delta G 37 degrees for propagation of an uninterrupted helix of equivalent sequence, CGGC. When X and Z are omitted, the delta delta 37 degrees is even more favorable by approximately 1 kcal/mol (1 cal = 4.184J). On average, predictions of 11 RNA secondary structures improve from 67 to 74% accuracy by inclusion of similar stacking contributions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures.

              Melting temperatures, T(m), were systematically studied for a set of 92 DNA duplex oligomers in a variety of sodium ion concentrations ranging from 69 mM to 1.02 M. The relationship between T(m) and ln [Na(+)] was nonlinear over this range of sodium ion concentrations, and the observed melting temperatures were poorly predicted by existing algorithms. A new empirical relationship was derived from UV melting data that employs a quadratic function, which better models the melting temperatures of DNA duplex oligomers as sodium ion concentration is varied. Statistical analysis shows that this improved salt correction is significantly more accurate than previously suggested algorithms and predicts salt-corrected melting temperatures with an average error of only 1.6 degrees C when tested against an independent validation set of T(m) measurements obtained from the literature. Differential scanning calorimetry studies demonstrate that this T(m) salt correction is insensitive to DNA concentration. The T(m) salt correction function was found to be sequence-dependent and varied with the fraction of G.C base pairs, in agreement with previous studies of genomic and polymeric DNAs. The salt correction function is independent of oligomer length, suggesting that end-fraying and other end effects have little influence on the amount of sodium counterions released during duplex melting. The results are discussed in the context of counterion condensation theory.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2005
                01 July 2005
                27 June 2005
                : 33
                : Web Server issue
                : W577-W581
                Affiliations
                1Department of Computer Science, Rensselaer Polytechnic Institute Troy, NY 12180-3590, USA
                2Department of Mathematical Sciences, Rensselaer Polytechnic Institute Troy, NY 12180-3590, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 518 276 6902; Fax: +1 518 276 4824; Email: zukerm@ 123456rpi.edu
                Article
                10.1093/nar/gki591
                1160267
                15980540
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                Categories
                Article

                Genetics

                Comments

                Comment on this article