Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Spin Transfer Torque Generated by the Topological Insulator Bi_2Se_3

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Magnetic devices are a leading contender for implementing memory and logic technologies that are nonvolatile, that can scale to high density and high speed, and that do not suffer wear-out. However, widespread applications of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort, in particular discoveries that spin-orbit interactions in heavy metal/ferromagnet bilayers can yield strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. As part of the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators (TIs), which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron's spin orientation is locked relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the TI Bi_2Se_3 at room temperature can indeed apply a strong spin-transfer torque to an adjacent ferromagnetic permalloy (Py = Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in the Bi_2Se_3 is greater than for any other spin-torque source material measured to date, even for non-ideal TI films wherein the surface states coexist with bulk conduction. Our data suggest that TIs have potential to enable very efficient electrical manipulation of magnetic materials at room temperature for memory and logic applications.

      Related collections

      Most cited references 19

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topological Insulators

       ,   (2011)
      Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Topological Insulators in Three Dimensions

        We study three dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where the QSH effect is distinguished by a single \(Z_2\) topological invariant, in three dimensions there are 4 invariants distinguishing 16 "topological insulator" phases. There are two general classes: weak (WTI) and strong (STI) topological insulators. The WTI states are equivalent to layered 2D QSH states, but are fragile because disorder continuously connects them to band insulators. The STI states are robust and have surface states that realize the 2+1 dimensional parity anomaly without fermion doubling, giving rise to a novel "topological metal" surface phase. We introduce a tight binding model which realizes both the WTI and STI phases, and we discuss the relevance of this model to real three dimensional materials, including bismuth.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin Hall effect

           J. E. Hirsch (1999)
          It is proposed that when a charge current circulates in a paramagnetic metal a transverse spin imbalance will be generated, giving rise to a 'spin Hall voltage'. Similarly, that when a spin current circulates a transverse charge imbalance will be generated, hence a Hall voltage, in the absence of charge current and magnetic field. Based on these principles we propose an experiment to generate and detect a spin current in a paramagnetic metal.
            Bookmark

            Author and article information

            Journal
            05 February 2014
            1402.1124
            10.1038/nature13534

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            34 pages; Supplementary information included
            cond-mat.mes-hall

            Comments

            Comment on this article