12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TIM-3 Regulates Distinct Functions in Macrophages

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.

          Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression.

            Comprehensive analysis of the gene expression profiles associated with human monocyte-to-macrophage differentiation and polarization toward M1 or M2 phenotypes led to the following main results: 1) M-CSF-driven monocyte-to-macrophage differentiation is associated with activation of cell cycle genes, substantiating the underestimated proliferation potential of monocytes. 2) M-CSF leads to expression of a substantial part of the M2 transcriptome, suggesting that under homeostatic conditions a default shift toward M2 occurs. 3) Modulation of genes involved in metabolic activities is a prominent feature of macrophage differentiation and polarization. 4) Lipid metabolism is a main category of modulated transcripts, with expected up-regulation of cyclo-oxygenase 2 in M1 cells and unexpected cyclo-oxygenase 1 up-regulation in M2 cells. 5) Each step is characterized by a different repertoire of G protein-coupled receptors, with five nucleotide receptors as novel M2-associated genes. 6) The chemokinome of polarized macrophages is profoundly diverse and new differentially expressed chemokines are reported. Thus, transcriptome profiling reveals novel molecules and signatures associated with human monocyte-to-macrophage differentiation and polarized activation which may represent candidate targets in pathophysiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1.

              The mechanisms by which tumor microenvironments modulate nucleic acid-mediated innate immunity remain unknown. Here we identify the receptor TIM-3 as key in circumventing the stimulatory effects of nucleic acids in tumor immunity. Tumor-associated dendritic cells (DCs) in mouse tumors and patients with cancer had high expression of TIM-3. DC-derived TIM-3 suppressed innate immune responses through the recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a galectin-9-independent mechanism. In contrast, TIM-3 interacted with the alarmin HMGB1 to interfere with the recruitment of nucleic acids into DC endosomes and attenuated the therapeutic efficacy of DNA vaccination and chemotherapy by diminishing the immunogenicity of nucleic acids released from dying tumor cells. Our findings define a mechanism whereby tumor microenvironments suppress antitumor immunity mediated by nucleic acids.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/228507
                URI : http://frontiersin.org/people/u/37733
                URI : http://frontiersin.org/people/u/49193
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                13 June 2016
                2016
                : 7
                : 229
                Affiliations
                [1] 1Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas” , México City, México
                [2] 2Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas” , México City, México
                Author notes

                Edited by: Charles Dudley Mills, BioMedical Consultants, USA

                Reviewed by: William L. Redmond, Earle A. Chiles Research Institute, USA; Zsolt Illes, University of Southern Denmark, Denmark

                *Correspondence: Isabel Sada-Ovalle, isadamx@ 123456iner.gob.mx

                Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00229
                4904032
                27379093
                9e064798-cd0e-45dc-95ee-698b4da43171
                Copyright © 2016 Ocaña-Guzman, Torre-Bouscoulet and Sada-Ovalle.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 February 2016
                : 26 May 2016
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 51, Pages: 9, Words: 6532
                Categories
                Immunology
                Review

                Immunology
                tim-3,macrophages,immune regulation,innate immune response,tolerance mechanisms
                Immunology
                tim-3, macrophages, immune regulation, innate immune response, tolerance mechanisms

                Comments

                Comment on this article