20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An exhaustive real-time reverse transcriptase-polymerase chain reaction (PCR) quantification method was used to determine 15 of the catalytically active human UDP-glucuronosyltransferase (UGT) isoforms (1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B11, 2B15, and 2B17). The specific primers for respective human UGTs were developed for differential determination. The cDNA derived from the 1A7 isoform was detected in the esophagus, the 1A8 and 1A10 isoforms were detected in the small intestine, and all other isoforms were detected in at least the liver by PCR. In all cases, single bands of the expected size on the agarose gel were confirmed to correspond with the predicted UGT isoform sequences. Each calibration curve showed linearity between the PCR crossing point and the calibrator copy number. The correlation coefficients were greater than 0.9957 with high reproducibility. This exhaustive measurement method was applied to UGT expression in 23 human tissue types. UGT was mostly expressed in the alimentary system and liver. We were surprised to find that extremely high expression in the liver was found for UGT2B4 and UGT2B15, which had, respectively, 8.98 and 4.38 times greater expression than UGT2B7 in the liver. In addition, even though expressed at low levels, several UGT isoforms were expressed in steroidogenic tissues, such as the breast, prostate, heart, and adrenal. Therefore, this quantification method may provide valuable information about the medical efficacy or pharmacokinetic characteristics of a wide variety of UGT-metabolized drugs.

          Related collections

          Author and article information

          Journal
          Drug Metab Dispos
          Drug metabolism and disposition: the biological fate of chemicals
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          1521-009X
          0090-9556
          Jan 2009
          : 37
          : 1
          Affiliations
          [1 ] Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan. ohno@hoshi.ac.jp
          Article
          dmd.108.023598
          10.1124/dmd.108.023598
          18838504
          9e0912d2-b262-406d-98ea-28b35f7c6cc6
          History

          Comments

          Comment on this article