Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diverse exocytic pathways for mast cell mediators

      , ,

      Biochemical Society Transactions

      Portland Press Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 130

          • Record: found
          • Abstract: found
          • Article: not found

          SNAREs--engines for membrane fusion.

          Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Properties of mouse and human IgG receptors and their contribution to disease models.

             Pierre Bruhns (2012)
            Impressive advances in defining the properties of receptors for the Fc portion of immunoglobulins (FcR) have been made over the past several years. Ligand specificities were systematically analyzed for both human and mouse FcRs that revealed novel receptors for specific IgG subclasses. Expression patterns were redefined using novel specific anti-FcR mAbs that revealed major differences between human and mouse systems. The in vivo roles of IgG receptors have been addressed using specific FcR knockout mice or in mice expressing a single FcR, and have demonstrated a predominant contribution of mouse activating IgG receptors FcγRIII and FcγRIV to models of autoimmunity (eg, arthritis) and allergy (eg, anaphylaxis). Novel blocking mAbs specific for these activating IgG receptors have enabled, for the first time, the investigation of their roles in vivo in wild-type mice. In parallel, the in vivo properties of human FcRs have been reported using transgenic mice and models of inflammatory and allergic reactions, in particular those of human activating IgG receptor FcγRIIA (CD32A). Importantly, these studies led to the identification of specific cell populations responsible for the induction of various inflammatory diseases and have revealed, in particular, the unexpected contribution of neutrophils and monocytes to the induction of anaphylactic shock.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New developments in mast cell biology.

              Mast cells can function as effector and immunoregulatory cells in immunoglobulin E-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review focuses on exciting new developments in the field of mast cell biology published in the past year. We highlight advances in the understanding of FcvarepsilonRI-mediated signaling and mast cell-activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we discuss newly identified functions for mast cells or individual mast cell products, such as proteases and interleukin 10, in host defense, cardiovascular disease and tumor biology and in settings in which mast cells have anti-inflammatory or immunosuppressive functions.
                Bookmark

                Author and article information

                Journal
                Biochemical Society Transactions
                Biochm. Soc. Trans.
                Portland Press Ltd.
                0300-5127
                1470-8752
                April 17 2018
                April 17 2018
                April 17 2018
                February 22 2018
                : 46
                : 2
                : 235-247
                10.1042/BST20170450
                © 2018

                Comments

                Comment on this article