105
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer

      research-article
      1 , 1 , 2 ,
      Journal of Molecular Signaling
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mammalian forkhead members of the class O (FOXO) transcription factors, including FOXO1, FOXO3a, and FOXO4, are implicated in the regulation of several biological processes, including the stress resistance, metabolism, cell cycle, apoptosis and DNA repair. The objectives of this study were to examine the molecular mechanisms by which FOXO transcription factors induced cell cycle arrest and apoptosis and enhanced anti-proliferative effects of sulforaphane (SFN, an active compound in cruciferous vegetables) in pancreatic cancer cells.

          Results

          Our data demonstrated that SFN inhibited cell proliferation and colony formation, and induced apoptosis through caspase-3 activation in pancreatic cancer cells. The inhibition of PI3K/AKT and MEK/ERK pathways activated FOXO transcription factors. SFN inhibited phosphorylation of AKT and ERK, and activated FOXO transcription factors, leading to cell cycle arrest and apoptosis. Phosphorylation deficient mutants of FOXO proteins enhanced FOXO transcriptional activity, and further enhanced SFN-induced FOXO activity and apoptosis. SFN induced the expression of p21 /CIP1 and p27 /KIP1, and inhibited the expression of cyclin D1.

          Conclusion

          These data suggest that inhibition of PI3K/AKT and ERK pathways acts together to activate FOXO transcription factor and enhances SFN-induced FOXO transcriptional activity, leading to cell cycle arrest and apoptosis.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.

          Mapping of homozygous deletions on human chromosome 10q23 has led to the isolation of a candidate tumor suppressor gene, PTEN, that appears to be mutated at considerable frequency in human cancers. In preliminary screens, mutations of PTEN were detected in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer cell lines, 6% (4/65) of breast cancer cell lines and xenografts, and 17% (3/18) of primary glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions. These homologies suggest that PTEN may suppress tumor cell growth by antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metastasis through interactions at focal adhesions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cellular survival: a play in three Akts.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.

              Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) is a key molecule involved in cell growth signaling. We demonstrated that overexpression of PTEN, a putative tumor suppressor, reduced insulin-induced PtdIns(3,4,5)P3 production in human 293 cells without effecting insulin-induced phosphoinositide 3-kinase activation. Further, transfection of the catalytically inactive mutant of PTEN (C124S) caused PtdIns(3,4,5)P3 accumulation in the absence of insulin stimulation. Purified recombinant PTEN catalyzed dephosphorylation of PtdIns(3,4,5)P3, specifically at position 3 on the inositol ring. PTEN also exhibited 3-phosphatase activity toward inositol 1,3,4,5-tetrakisphosphate. Our results raise the possibility that PTEN acts in vivo as a phosphoinositide 3-phosphatase by regulating PtdIns(3,4,5)P3 levels. As expected, the C124S mutant of PTEN was incapable of catalyzing dephosphorylation of PtdIns(3,4,5)P3 consistent with the mechanism observed in protein-tyrosine phosphatase-catalyzed reactions.
                Bookmark

                Author and article information

                Journal
                J Mol Signal
                Journal of Molecular Signaling
                BioMed Central
                1750-2187
                2010
                19 July 2010
                : 5
                : 10
                Affiliations
                [1 ]Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
                [2 ]Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
                Article
                1750-2187-5-10
                10.1186/1750-2187-5-10
                2915986
                20642839
                9e1ea12a-7250-4323-9724-f476359d4d07
                Copyright ©2010 Roy et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 June 2010
                : 19 July 2010
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article