6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence.

      The Journal of Biological Chemistry
      Animals, Base Sequence, Binding Sites, DNA-Binding Proteins, genetics, metabolism, Drosophila, Drosophila Proteins, Genes, Reporter, HeLa Cells, Humans, Mice, Molecular Sequence Data, Nuclear Matrix, Nuclear Proteins, Nucleic Acid Conformation, Repressor Proteins, Retroelements, Sequence Analysis, DNA, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 5'-untranslated region of the Drosophila gypsy retrotransposon contains an "insulator," which disrupts the interactions between enhancer and promoter elements located apart. The insulator effect is dependent on the suppressor of Hairy-wing (su(Hw)) protein, which binds to reiterated sites within the 350 base pairs of the gypsy insulator, whereby it additionally acts as a transcriptional activator of gypsy. Here, we show that the 350-base pair su(Hw) binding site-containing gypsy insulator behaves in addition as a matrix/scaffold attachment region (MAR/SAR), involved in interactions with the nuclear matrix. In vitro experiments using nuclear matrices from Drosophila, murine, and human cells demonstrate specific binding of the gypsy insulator, not observed with any other sequence within the retrotransposon. Moreover, we show that the gypsy insulator, like previously characterized MAR/SARs, specifically interacts with topoisomerase II and histone H1, i.e. with two essential components of the nuclear matrix. Finally, experiments within cells in culture demonstrate differential effects of the gypsy MAR sequence on reporter genes, namely no effect under conditions of transient transfection and a repressing effect in stable transformants, as expected for a sequence involved in chromatin structure and organization. A model for the gypsy insulator, which combines within a short "compacted" retroviral sequence three functional domains (insulator, enhancer, and the presently unraveled MAR/SAR) dispersed within more extended regions in other "boundary" domains, is discussed in relation to previously proposed models for insulation.

          Related collections

          Author and article information

          Comments

          Comment on this article