4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Esophageal squamous cell carcinoma (ESCC) cells are heterogeneous, easily develop radioresistance, and recur. Single-cell RNA-seq (scRNA-seq) is a next-generation sequencing method that can delineate diverse gene expression profiles of individual cells and mining their heterogeneous behaviors in response to irradiation. Our aim was using scRNA-seq to describe the difference between parental cells and cells that acquired radioresistance, and to investigate the dynamic changes of the transcriptome of cells in response to FIR.

          Results

          We sequenced ESCC cell lines KYSE180 with and without fractionated irradiation (FIR). A total of 218 scRNA-seq libraries were obtained from 88 cells exposed to 12 Gy (KYSE-180-12 Gy), 89 exposed to 30 Gy (KYSE-180-30 Gy), and 41 parental KYSE-180 cells not exposed to FIR. Dynamic gene expression patterns were determined by comprehensive consideration of genes and pathways. Biological experiments showed that KYSE-180 cells became radioresistant after FIR. PCA analysis of scRNA-seq data showed KYSE-180, KYSE-180-12 Gy and KYSE-180-30 Gy cells were discrete away from each other. Two sub-populations found in KYSE-180-12 Gy and only one remained in KYSE-180-30 Gy. This sub-population genes exposure to FIR through 12 Gy to 30 Gy were relevant to the PI3K-AKT pathway, pathways evading apoptosis, tumor cell migration, metastasis, or invasion pathways, and cell differentiation and proliferation pathways. We validated DEGs, such as CFLAR, LAMA5, ITGA6, ITGB4, and SDC4 genes, in these five pathways as radioresistant genes in bulk cell RNA-seq data from ESCC tissue of a ESCC patient treated with radiotherapy and from KYSE-150 cell lines.

          Conclusions

          Our results delineated the divergent gene expression patterns of individual ESCC cells exposure to FIR, and displayed genes and pathways related to development of radioresistance.

          Electronic supplementary material

          The online version of this article (10.1186/s12864-019-5970-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic landscape of esophageal squamous cell carcinoma.

          Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers. We performed exome sequencing on 113 tumor-normal pairs, yielding a mean of 82 non-silent mutations per tumor, and 8 cell lines. The mutational profile of ESCC closely resembles those of squamous cell carcinomas of other tissues but differs from that of esophageal adenocarcinoma. Genes involved in cell cycle and apoptosis regulation were mutated in 99% of cases by somatic alterations of TP53 (93%), CCND1 (33%), CDKN2A (20%), NFE2L2 (10%) and RB1 (9%). Histone modifier genes were frequently mutated, including KMT2D (also called MLL2; 19%), KMT2C (MLL3; 6%), KDM6A (7%), EP300 (10%) and CREBBP (6%). EP300 mutations were associated with poor survival. The Hippo and Notch pathways were dysregulated by mutations in FAT1, FAT2, FAT3 or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2 or NOTCH3 (22%) or FBXW7 (5%), respectively. These results define the mutational landscape of ESCC and highlight mutations in epigenetic modulators with prognostic and potentially therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic and molecular characterization of esophageal squamous cell carcinoma

            Esophageal squamous cell carcinoma (ESCC) is a world-wide prevalent cancer, which is particularly common in certain regions of Asia. Here we report the whole-exome or targeted deep sequencing of 139 paired ESCC cases, and analysis of somatic copy number variations (SCNV) of over 180 ESCCs. We identified novel significantly mutated genes such as FAT1, FAT2, ZNF750 and KMT2D, in addition to previously discovered ones (TP53, PIK3CA and NOTCH1). Further SCNV evaluation, immunohistochemistry and biological analysis suggested their functional relevance in ESCC. Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic regulation are frequently dysregulated by multiple molecular mechanisms in this cancer. Moreover, our approaches uncovered many novel druggable candidates, and XPO1 was further explored as a therapeutic target because of its mutation and protein overexpression. Together, our integrated study unmasks a number of novel genetic lesions in ESCC and provides an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ionizing radiation-induced DNA damage, response, and repair.

              Ionizing radiation (IR) is an effective and commonly employed treatment in the management of more than half of human malignancies. Because IR's ability to control tumors mainly relies on DNA damage, the cell's DNA damage response and repair (DRR) processes may hold the key to determining tumor responses. IR-induced DNA damage activates a number of DRR signaling cascades that control cell cycle arrest, DNA repair, and the cell's fate. DNA double-strand breaks (DSBs) generated by IR are the most lethal form of damage, and are mainly repaired via either homologous recombination (HR) or nonhomologous end-joining (NHEJ) pathways.
                Bookmark

                Author and article information

                Contributors
                + 86 137 571 86599 , wushixiu@medmail.com.cn
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                25 July 2019
                25 July 2019
                2019
                : 20
                : 611
                Affiliations
                [1 ]Hangzhou Cancer Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province 310002 People’s Republic of China
                [2 ]National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.113 Baohe Street Longgang District, Shenzhen, China
                Article
                5970
                10.1186/s12864-019-5970-0
                6659267
                31345182
                9e2c8934-ee15-481f-b7be-17b77b816650
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 November 2018
                : 11 July 2019
                Funding
                Funded by: Zhejiang Provincial Medical Scientific Research Foundation of China
                Award ID: WZJ-ZJ-1628
                Award Recipient :
                Funded by: Hangzhou Science and Technology Development Program
                Award ID: 20150733Q63
                Award Recipient :
                Funded by: National Natural Science Foundation of China
                Award ID: 81672994
                Award Recipient :
                Funded by: Zhejiang Provincial Foundation for Natural Sciences
                Award ID: LZ15H220001
                Award Recipient :
                Funded by: Zhejiang Provincial Medical Scientific Research Foundation of China
                Award ID: 2015PYA009
                Award Recipient :
                Funded by: Hangzhou Agriculture and Social Developmental Research Program
                Award ID: 20172016A04
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Genetics
                single-cell rna-seq,transcriptome,esophageal squamous cell carcinoma,radioresistance,gene expression

                Comments

                Comment on this article