+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alignment-Free Population Genomics: An Efficient Estimator of Sequence Diversity

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Comparative sequencing contributes critically to the functional annotation of genomes. One prerequisite for successful analysis of the increasingly abundant comparative sequencing data is the availability of efficient computational tools. We present here a strategy for comparing unaligned genomes based on a coalescent approach combined with advanced algorithms for indexing sequences. These algorithms are particularly efficient when analyzing large genomes, as their run time ideally grows only linearly with sequence length. Using this approach, we have derived and implemented a maximum-likelihood estimator of the average number of mismatches per site between two closely related sequences, π. By allowing for fluctuating coalescent times, we are able to improve a previously published alignment-free estimator of π. We show through simulation that our new estimator is fast and accurate even with moderate recombination ( ρπ). To demonstrate its applicability to real data, we compare the unaligned genomes of Drosophila persimilis and D. pseudoobscura. In agreement with previous studies, our sliding window analysis locates the global divergence minimum between these two genomes to the pericentromeric region of chromosome 3.

          Related collections

          Most cited references 11

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of genes and genomes on the Drosophila phylogeny.

          Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
            • Record: found
            • Abstract: found
            • Article: not found

            Alignment-free sequence comparison-a review.

            Genetic recombination and, in particular, genetic shuffling are at odds with sequence comparison by alignment, which assumes conservation of contiguity between homologous segments. A variety of theoretical foundations are being used to derive alignment-free methods that overcome this limitation. The formulation of alternative metrics for dissimilarity between sequences and their algorithmic implementations are reviewed. The overwhelming majority of work on alignment-free sequence has taken place in the past two decades, with most reports published in the past 5 years. Two main categories of methods have been proposed-methods based on word (oligomer) frequency, and methods that do not require resolving the sequence with fixed word length segments. The first category is based on the statistics of word frequency, on the distances defined in a Cartesian space defined by the frequency vectors, and on the information content of frequency distribution. The second category includes the use of Kolmogorov complexity and Chaos Theory. Despite their low visibility, alignment-free metrics are in fact already widely used as pre-selection filters for alignment-based querying of large applications. Recent work is furthering their usage as a scale-independent methodology that is capable of recognizing homology when loss of contiguity is beyond the possibility of alignment. Most of the alignment-free algorithms reviewed were implemented in MATLAB code and are available at http://bioinformatics.musc.edu/resources.html
              • Record: found
              • Abstract: found
              • Article: not found

              Properties of a neutral allele model with intragenic recombination.

              An infinite-site neutral allele model with crossing-over possible at any of an infinite number of sites is studied. A formula for the variance of the number of segregating sites in a sample of gametes is obtained. An approximate expression for the expected homozygosity is also derived. Simulation results are presented to indicate the accuracy of the approximations. The results concerning the number of segregating sites and the expected homozygosity indicate that a two-locus model and the infinite-site model behave similarly for 4Nu less than or equal to 2 and r less than or equal to 5u, where N is the population size, u is the neutral mutation rate, and r is the recombination rate. Simulations of a two-locus model and a four-locus model were also carried out to determine the effect of intragenic recombination on the homozygosity test of Watterson (Genetics 85, 789-814; 88, 405-417) and on the number of unique alleles in a sample. The results indicate that for 4Nu less than or equal to 2 and r less than or equal to 10u, the effect of recombination is quite small.

                Author and article information

                G3 (Bethesda)
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                1 August 2012
                August 2012
                : 2
                : 8
                : 883-889
                [* ]Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
                []Mathematical Stochastics, Mathematical Institute, Albert-Ludwigs University, 79085 Freiburg, Germany
                Author notes
                [1 ]Corresponding author: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany. E-mail: haubold@ 123456evolbio.mpg.de
                Copyright © 2012 Haubold, Pfaffelhuber

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Custom metadata


                genetic diversity, maximum-likelihood, alignment-free, match length distribution, drosophila


                Comment on this article