1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Choline kinase alpha is a 457-residue protein that catalyzes the reaction between ATP and choline to yield ADP and phosphocholine. This metabolic action has been well studied because of choline kinase’s link to cancer malignancy and poor patient prognosis. As the myriad of x-ray crystal structures available for this enzyme show, chemotherapeutic drug design has centered on stopping the catalytic activity of choline kinase and reducing the downstream metabolites it produces. Furthermore, these crystal structures only reveal the catalytic domain of the protein, residues 80–457. However, recent studies provide evidence for a non-catalytic protein-binding role for choline kinase alpha. Here, we show that choline kinase alpha interacts with the SH3 domain of c-Src. Co-precipitation assays, surface plasmon resonance, and crystallographic analysis of a 1.5 Å structure demonstrate that this interaction is specific and is mediated by the poly-proline region found N-terminal to the catalytic domain of choline kinase. Taken together, these data offer strong evidence that choline kinase alpha has a heretofore underappreciated role in protein-protein interactions, which offers an exciting new way to approach drug development against this cancer-enhancing protein.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional structure of the tyrosine kinase c-Src.

          The structure of a large fragment of the c-Src tyrosine kinase, comprising the regulatory and kinase domains and the carboxy-terminal tall, has been determined at 1.7 A resolution in a closed, inactive state. Interactions among domains, stabilized by binding of the phosphorylated tail to the SH2 domain, lock the molecule in a conformation that simultaneously disrupts the kinase active site and sequesters the binding surfaces of the SH2 and SH3 domains. The structure shows how appropriate cellular signals, or transforming mutations in v-Src, could break these interactions to produce an open, active kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polyproline-II helix in proteins: structure and function.

            The poly-l-proline type II (PPII) helix in recent years has emerged clearly as a structural class not only of fibrillar proteins (in collagen, PPII is a dominant conformation) but also of the folded and unfolded proteins. Although much less abundant in folded proteins than the α-helix and β-structure, the left-handed, extended PPII helix represents the only frequently occurring regular structure apart from these two structure classes. Natively unfolded proteins have a high content of the PPII helices identified by spectroscopic methods. Apart from the structural function, PPII is favorable for protein-protein and protein-nucleic acid interactions and plays a major role in signal transduction and protein complex assembly, as this structure is often found in binding sites, specifically binding sites of widely spread SH3 domains. PPII helices do not necessarily contain proline, but proline has high PPII propensity. Commonly occurring proline-rich regions, serving as recognition sites, are likely to have PPII structure. PPII helices are involved in transcription, cell motility, self-assembly, elasticity, and bacterial and viral pathogenesis, and has an important structural role in amyloidogenic proteins. However, PPII helices are not always assigned in experimentally solved structures, and they are rarely used in protein structure modeling. We aim to give an overview of this structural class and of the place it holds in our current understanding of protein structure and function. This review is subdivided into three main parts: the first part covers PPII helices in unfolded peptides and proteins, the second part includes studies of the PPII helices in folded proteins, and the third part discusses the functional role of the PPII. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A ligase-mediated gene detection technique.

              An assay for the presence of given DNA sequences has been developed, based on the ability of two oligonucleotides to anneal immediately adjacent to each other on a complementary target DNA molecule. The two oligonucleotides are then joined covalently by the action of a DNA ligase, provided that the nucleotides at the junction are correctly base-paired. Thus single nucleotide substitutions can be distinguished. This strategy permits the rapid and standardized identification of single-copy gene sequences in genomic DNA.
                Bookmark

                Author and article information

                Contributors
                Lavie@uic.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 November 2019
                19 November 2019
                2019
                : 9
                : 17121
                Affiliations
                [1 ]ISNI 0000 0001 2175 0319, GRID grid.185648.6, Department of Biochemistry and Molecular Genetics, , University of Illinois at Chicago, ; Chicago, Illinois 60607 USA
                [2 ]ISNI 0000 0004 1936 9000, GRID grid.21925.3d, Department of Microbiology and Molecular Genetics, , University of Pittsburgh School of Medicine, ; Pittsburgh, Pennsylvania 15219 USA
                [3 ]GRID grid.280892.9, The Jesse Brown VA Medical Center, ; Chicago, Illinois 60612 USA
                Article
                53447
                10.1038/s41598-019-53447-0
                6864063
                31745227
                9e40c97b-d5af-4ed5-b335-6f2ccc130e03
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 April 2019
                : 30 October 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000070, U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB);
                Award ID: R01EB013685
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000738, U.S. Department of Veterans Affairs (Department of Veterans Affairs);
                Award ID: I01BX001919
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                proteins,structural biology
                Uncategorized
                proteins, structural biology

                Comments

                Comment on this article