Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ethical issues in human germline gene editing: a perspective from China

      ,

      Monash Bioethics Review

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: not found
          • Article: not found

          Biotechnology. A prudent path forward for genomic engineering and germline gene modification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-organization of the in vitro attached human embryo.

            Implantation of the blastocyst is a developmental milestone in mammalian embryonic development. At this time, a coordinated program of lineage diversification, cell-fate specification, and morphogenetic movements establishes the generation of extra-embryonic tissues and the embryo proper, and determines the conditions for successful pregnancy and gastrulation. Despite its basic and clinical importance, this process remains mysterious in humans. Here we report the use of a novel in vitro system to study the post-implantation development of the human embryo. We unveil the self-organizing abilities and autonomy of in vitro attached human embryos. We find human-specific molecular signatures of early cell lineage, timing, and architecture. Embryos display key landmarks of normal development, including epiblast expansion, lineage segregation, bi-laminar disc formation, amniotic and yolk sac cavitation, and trophoblast diversification. Our findings highlight the species-specificity of these developmental events and provide a new understanding of early human embryonic development beyond the blastocyst stage. In addition, our study establishes a new model system relevant to early human pregnancy loss. Finally, our work will also assist in the rational design of differentiation protocols of human embryonic stem cells to specific cell types for disease modelling and cell replacement therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-organisation of the human embryo in the absence of maternal tissues

              Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here, we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis. These include segregation of the pluripotent embryonic and extra-embryonic lineages and morphogenetic re-arrangements leading to: generation of a bi-laminar disc, formation of a pro-amniotic cavity within the embryonic lineage, appearance of the prospective yolk sac, and trophoblast differentiation. Using human embryos and human pluripotent stem cells, we show that the reorganisation of the embryonic lineage is mediated by cellular polarisation leading to cavity formation. Together, our results indicate that the critical remodelling events at this stage of human development are embryo-autonomous highlighting the remarkable and unanticipated self-organising properties of human embryos.
                Bookmark

                Author and article information

                Journal
                Monash Bioethics Review
                Monash Bioeth. Rev.
                Springer Science and Business Media LLC
                1321-2753
                1836-6716
                December 2018
                December 28 2018
                December 2018
                : 36
                : 1-4
                : 23-35
                Article
                10.1007/s40592-018-0091-0
                © 2018

                Comments

                Comment on this article