10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Miltefosine Has a Postantifungal Effect and Induces Apoptosis in Cryptococcus Yeasts

      ,   , ,
      Antimicrobial Agents and Chemotherapy
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles) to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activities against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had postantifungal effect on Cryptococcus, with a proliferation delay of up to 8.15 h after a short exposure to fungicidal doses. MFS at fungicidal concentrations increased the plasma membrane permeability, likely due to a direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased reactive oxygen species (ROS) production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry with light microscopy), plasma membrane irregularities, mitochondrial swelling, and a less conspicuous cell wall. Our results suggest that MFS increases the plasma membrane permeability in Cryptococcus via an interaction with ergosterol and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii and warrant further studies to establish clinical protocols for MFS use against cryptococcosis.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis.

          Miltefosine is an alkylphosphocholine drug with demonstrated activity against various parasite species and cancer cells as well as some pathogenic bacteria and fungi. For 10 years it has been licensed in India for the treatment of visceral leishmaniasis (VL), a fatal neglected parasitic disease. It is the first and still the only oral drug that can be used to treat VL and cutaneous leishmaniasis (CL). The standard 28 day miltefosine monotherapy regimen is well tolerated, except for mild gastrointestinal side effects, although its teratogenic potential severely hampers its general use in the clinic and roll-out in national elimination programmes. The pharmacokinetics of miltefosine are mainly characterized by its long residence time in the body, resulting in extensive drug accumulation during treatment and long elimination half-lives. At the moment, different combination therapy strategies encompassing miltefosine are being tested in multiple controlled clinical trials in various geographical areas of endemicity, both in South Asia and East Africa. We here review the most salient pre-clinical and clinical pharmacological aspects of miltefosine, its mechanism of action against Leishmania parasites and other pathogens, and provide a systematic overview of the efficacy and safety data from all clinical trials of miltefosine, either alone or in combination, in the treatment of VL and CL.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Cryptococcus neoformans capsule: a sword and a shield.

            The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug

              “Amphotericin B acts through pore formation at the cell membrane after binding to ergosterol” is an accepted dogma about the action mechanism of this antifungal, and this sentence is widely found in the literature. But after 60 years of investigation, the action mechanism of Amphotericin B is not fully elucidated. Amphotericin B is a polyene substance that is one of the most effective drugs for the treatment of fungal and parasite infections. As stated above, the first mechanism of action described was pore formation after binding to the ergosterol present in the membrane. But it has also been demonstrated that AmB induces oxidative damage in the cells. Moreover, amphotericin B modulates the immune system, and this activity has been related to the protective effect of the molecule, but also to its toxicity in the host. This review tries to provide a general overview of the main aspects of this molecule, and highlight the multiple effects that this molecule has on both the fungal and host cells.
                Bookmark

                Author and article information

                Journal
                Antimicrobial Agents and Chemotherapy
                Antimicrob Agents Chemother
                American Society for Microbiology
                0066-4804
                1098-6596
                August 2018
                July 27 2018
                May 29 2018
                : 62
                : 8
                Article
                10.1128/AAC.00312-18
                6105859
                29844051
                9e4d3ae3-dc69-4f77-838c-e5e723674ed2
                © 2018
                History

                Comments

                Comment on this article