5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methylglyoxal-Derived Advanced Glycation End Product (AGE4)-Induced Apoptosis Leads to Mitochondrial Dysfunction and Endoplasmic Reticulum Stress through the RAGE/JNK Pathway in Kidney Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced glycation end products (AGEs) are formed via nonenzymatic reactions between reducing sugars and proteins. Recent studies have shown that methylglyoxal, a potent precursor for AGEs, causes a variety of biological dysfunctions, including diabetes, inflammation, renal failure, and cancer. However, little is known about the function of methylglyoxal-derived AGEs (AGE4) in kidney cells. Therefore, we verified the expression of endoplasmic reticulum (ER) stress-related genes and apoptosis markers to determine the effects of AGE4 on human proximal epithelial cells (HK-2). Moreover, our results showed that AGE4 induced the expression of apoptosis markers, such as Bax, p53, and kidney injury molecule-1, but downregulated Bcl-2 and cyclin D1 levels. AGE4 also promoted the expression of NF-κB, serving as a transcription factor, and the phosphorylation of c-Jun NH 2-terminal kinase (JNK), which induced cell apoptosis and ER stress mediated by the JNK inhibitor. Furthermore, AGE4 induced mitochondrial dysfunction by inducing the permeabilization of the mitochondrial membrane and ATP synthesis. Through in vitro and in vivo experiments, this study provides a new perspective on renal dysfunction with regard to the AGE4-induced RAGE /JNK signaling pathway, which leads to renal cell apoptosis via the imbalance of mitochondrial function and ER stress in kidney damage.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Global aetiology and epidemiology of type 2 diabetes mellitus and its complications

          Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The multifaceted contributions of mitochondria to cellular metabolism

            Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. Mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis, and function as hubs for metabolic waste management. We discuss the importance of these roles in both normal physiology and in disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors

              The B cell lymphoma 2 (BCL-2) family of proteins has a key role in regulating apoptosis and is often dysregulated in cancer. This has led to the development of several inhibitors of pro-survival BCL-2 family proteins such as BCL-2, BCL-XL and MCL1, including the BCL-2 inhibitor venetoclax, which has recently gained regulatory approval. Here, Ashkenazi and colleagues discuss the latest progress in developing small-molecule inhibitors of pro-survival BCL-2 family proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 June 2021
                June 2021
                : 22
                : 12
                : 6530
                Affiliations
                Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul 02841, Korea; wjdxmfhf@ 123456naver.com
                Author notes
                [* ]Correspondence: kwangwon@ 123456korea.ac.kr ; Tel.: +82-2-3290-3027
                Author information
                https://orcid.org/0000-0001-5326-469X
                Article
                ijms-22-06530
                10.3390/ijms22126530
                8235496
                34207084
                9e4e214d-b90e-42ce-9bfa-3dc35f5f5f03
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2021
                : 10 June 2021
                Categories
                Article

                Molecular biology
                methylglyoxal-derived ages,kidney injury,endoplasmic reticulum stress,mitochondrial dysfunction,jnk signal pathway

                Comments

                Comment on this article