62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β 2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.

          Related collections

          Most cited references441

          • Record: found
          • Abstract: found
          • Article: not found

          Colony-stimulating factors in inflammation and autoimmunity.

          Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
            • Record: found
            • Abstract: not found
            • Article: not found

            Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.

              • Record: found
              • Abstract: found
              • Article: not found

              Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system.

              Plasma uric acid has been associated with hypertension in a variety of disorders, and has been shown to be predictive of hypertension. The mechanistic role of uric acid in the development of hypertension is not known however. We tested the hypothesis that uric acid stimulates vascular smooth muscle cell (VSMC) proliferation and oxidative stress by stimulating the vascular renin-angiotensin system (RAS). Rat VSMC were exposed to 0-300 micromol uric acid for 48 h. Uric acid (200 and 300 micromol) stimulated the proliferation of VSMC as measured by thymidine uptake. This effect was prevented by 10(-6) mol losartan or by 10(-6) mol captopril. Incubation of VSMC with uric acid for 48 h also increased angiotensinogen messenger RNA expression and intracellular concentrations of angiotensin II. These responses were also inhibited by losartan and captopril. Increased expression of angiotensinogen mRNA was also inhibited by co-incubation with PD 98059, a mitogen-activated protein (MAP) kinase inhibitor. Uric acid stimulated the production of hydrogen peroxide and 8-isoprostane in VSMC. These increases in oxidative stress indicators were significantly reduced by co-incubating the cells with captopril or losartan. Uric acid also decreased nitrite and nitrate concentrations in the culture medium, an effect that was prevented by losartan and captopril. These results demonstrate that uric acid stimulates proliferation, angiotensin II production, and oxidative stress in VSMC through tissue RAS. This suggests that uric acid causes cardiovascular disorders by stimulating the vascular RAS, and this stimulation may be mediated by the MAP kinase pathway.

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                08 January 2018
                January 2018
                : 10
                : 1
                : 33
                Affiliations
                Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium; anneleen.pletinck@ 123456ugent.be (A.P.); eva.schepers@ 123456ugent.be (E.S.); griet.glorieux@ 123456ugent.be (G.G.)
                Author notes
                [* ]Correspondence: Raymond.Vanholder@ 123456UGent.be ; Tel.:+32-9-226-14-61
                Author information
                https://orcid.org/0000-0002-6443-7194
                Article
                toxins-10-00033
                10.3390/toxins10010033
                5793120
                29316724
                9e559f12-90d0-4a8e-a6d1-cf60d5bc181e
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 November 2017
                : 23 December 2017
                Categories
                Review

                Molecular medicine
                uremic toxins,uremic toxicity,uremia,chronic kidney disease,ckd,cardiovascular disease,inflammation,fibrosis,patho-physiology ckd,middle molecules,protein bound uremic solutes,water-soluble uremic solutes,this publication contains a comprehensive overview of the current knowledge on uremic toxicity, as well as an estimation of the degree of toxicity attributed to each individual toxin, and a classification according to the degree of known toxicity.

                Comments

                Comment on this article

                Related Documents Log