Blog
About

19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Infectivity in Relation to Bovine Leukemia Virus gp51 and p24 in Bovine Milk Exosomes

      , , , *

      PLoS ONE

      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are small membranous microvesicles (40–100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exosomes and BLV in bovine milk. BLV structural proteins, gp51 (Env) and p24 (Gag), were detected in bovine milk exosomes from BLV-infected cattle by Western blot analysis. In cells inoculated with these milk exosomes, BLV DNA was not detected during three serial passages by nested PCR. Purification of exosomes from persistently BLV-infected cells was achieved by immuno-magnetic separation using an antibody against exosomes coupled to magnetic beads. Consistently, BLV gp51 and p24 proteins were detected in purified exosomes. Moreover, reverse transcriptase activity was observed in purified exosomes, meaning that exosomes also contain viral enzyme. However, BLV DNA was not detected in serially passaged cells after inoculation of purified exosomes, indicating that exosomes carrying BLV proteins appeared to be not infectious. These results suggest that BLV proteins are released with milk exosomes and could be transferred into recipient cells of calves via milk exosomes as an alternative route not requiring virus infection. Moreover it is also possible that bovine milk exosomes play a role in clearance of BLV proteins from infected cells.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Exosomes: composition, biogenesis and function.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and proteomic profiling of exosomes in human urine.

              Urine provides an alternative to blood plasma as a potential source of disease biomarkers. One urinary biomarker already exploited in clinical studies is aquaporin-2. However, it remains a mystery how aquaporin-2 (an integral membrane protein) and other apical transporters are delivered to the urine. Here we address the hypothesis that these proteins reach the urine through the secretion of exosomes [membrane vesicles that originate as internal vesicles of multivesicular bodies (MVBs)]. Low-density urinary membrane vesicles from normal human subjects were isolated by differential centrifugation. ImmunoGold electron microscopy using antibodies directed to cytoplasmic or anticytoplasmic epitopes revealed that the vesicles are oriented "cytoplasmic-side inward," consistent with the unique orientation of exosomes. The vesicles were small (<100 nm), consistent with studies of MVBs and exosomes from other tissues. Proteomic analysis of urinary vesicles through nanospray liquid chromatography-tandem mass spectrometry identified numerous protein components of MVBs and of the endosomal pathway in general. Full liquid chromatography-tandem MS analysis revealed 295 proteins, including multiple protein products of genes already known to be responsible for renal and systemic diseases, including autosomal dominant polycystic kidney disease, Gitelman syndrome, Bartter syndrome, autosomal recessive syndrome of osteopetrosis with renal tubular acidosis, and familial renal hypomagnesemia. The results indicate that exosome isolation may provide an efficient first step in biomarker discovery in urine.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                17 October 2013
                : 8
                : 10
                Affiliations
                Department of Veterinary Medicine, Gifu University, Gifu, Japan
                Northeast Agricultural University, China
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NI YI. Performed the experiments: TY HS YI. Analyzed the data: TY HS NI YI. Wrote the paper: TY YI.

                Article
                PONE-D-13-06292
                10.1371/journal.pone.0077359
                3798320

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Counts
                Pages: 7
                Funding
                This study was supported in part by a Grant-in-Aid for Scientific Research (B) (No.23380178) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.
                Categories
                Research Article

                Uncategorized

                Comments

                Comment on this article