13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human neuroblastoma SH-SY5Y cells are a widely-used human neuronal cell model in the study of neurodegeneration. A recent study shows that, 1-methyl-4-phenylpyridine ion (MPP), which selectively causes dopaminergic neuronal death leading to Parkinson’s disease-like symptoms, can reduce SH-SY5Y cell viability by inducing H 2O 2 generation and subsequent TRPM2 channel activation. MPP-induced cell death is enhanced by increasing the TRPM2 expression. By contrast, increasing the TRPM2 expression has also been reported to support SH-SY5Y cell survival after exposure to H 2O 2, leading to the suggestion of a protective role for the TRPM2 channel. To clarify the role of reactive oxygen species (ROS)-induced TRPM2 channel activation in SH-SY5Y cells, we generated a stable SH-SY5Y cell line overexpressing the human TRPM2 channel and examined cell death and cell viability after exposure to H 2O 2 in the wild-type and TRPM2-overexpressing SH-SY5Y cells. Exposure to H 2O 2 resulted in concentration-dependent cell death and reduction in cell viability in both cell types. TRPM2 overexpression remarkably augmented H 2O 2-induced cell death and reduction in cell viability. Furthermore, H 2O 2-induced cell death in both the wild-type and TRPM2-overexpressing cells was prevented by 2-APB, a TRPM2 inhibitor, and also by PJ34 and DPQ, poly(ADP-ribose) polymerase (PARP) inhibitors. Collectively, our results show that increasing the TRPM2 expression renders SH-SY5Y cells to be more susceptible to ROS-induced cell death and reinforce the notion that the TRPM2 channel plays a critical role in conferring ROS-induced cell death. It is anticipated that SH-SY5Y cells can be useful for better understanding the molecular and signaling mechanisms for ROS-induced TRPM2-mediated neurodegeneration in the pathogenesis of neurodegenerative diseases.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          TRP channels.

          The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRP channels as cellular sensors.

            TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The SH-SY5Y cell line in Parkinson’s disease research: a systematic review

              Parkinson’s disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user’s guide. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0149-0) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                08 January 2019
                January 2019
                : 8
                : 1
                : 28
                Affiliations
                [1 ]Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China; anxinfang2018@ 123456126.com (X.A.); fuzixing1991@ 123456126.com (Z.F.); mcdhsm@ 123456163.com (C.M.); wangweiming2015@ 123456126.com (W.W.); wly98124@ 123456126.com (L.W.); xyldl8@ 123456126.com (D.L.)
                [2 ]School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 JT, UK
                Author notes
                Author information
                https://orcid.org/0000-0001-6398-0411
                Article
                cells-08-00028
                10.3390/cells8010028
                6356620
                30625984
                9e724545-e60c-49b8-9be2-a273ab103b1e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 November 2018
                : 30 December 2018
                Categories
                Article

                human neuroblastoma sh-sy5y cells,trpm2 channel,ros,neuronal cell death

                Comments

                Comment on this article