13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next-generation diagnostics: virus capture facilitates a sensitive viral diagnosis for epizootic and zoonotic pathogens including SARS-CoV-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples.

          Methods

          A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted.

          Results

          The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples.

          Conclusions

          The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40168-020-00973-z.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

            S Altschul (1997)
            The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures

              Abstract By 27 February 2020, the outbreak of coronavirus disease 2019 (COVID‐19) caused 82 623 confirmed cases and 2858 deaths globally, more than severe acute respiratory syndrome (SARS) (8273 cases, 775 deaths) and Middle East respiratory syndrome (MERS) (1139 cases, 431 deaths) caused in 2003 and 2013, respectively. COVID‐19 has spread to 46 countries internationally. Total fatality rate of COVID‐19 is estimated at 3.46% by far based on published data from the Chinese Center for Disease Control and Prevention (China CDC). Average incubation period of COVID‐19 is around 6.4 days, ranges from 0 to 24 days. The basic reproductive number (R0 ) of COVID‐19 ranges from 2 to 3.5 at the early phase regardless of different prediction models, which is higher than SARS and MERS. A study from China CDC showed majority of patients (80.9%) were considered asymptomatic or mild pneumonia but released large amounts of viruses at the early phase of infection, which posed enormous challenges for containing the spread of COVID‐19. Nosocomial transmission was another severe problem. A total of 3019 health workers were infected by 12 February 2020, which accounted for 3.83% of total number of infections, and extremely burdened the health system, especially in Wuhan. Limited epidemiological and clinical data suggest that the disease spectrum of COVID‐19 may differ from SARS or MERS. We summarize latest literatures on genetic, epidemiological, and clinical features of COVID‐19 in comparison to SARS and MERS and emphasize special measures on diagnosis and potential interventions. This review will improve our understanding of the unique features of COVID‐19 and enhance our control measures in the future.
                Bookmark

                Author and article information

                Contributors
                claudia.wylezich@fli.de
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                20 February 2021
                20 February 2021
                2021
                : 9
                : 51
                Affiliations
                [1 ]GRID grid.417834.d, Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health, ; Südufer 10, 17493 Greifswald-Insel Riems, Germany
                [2 ]GRID grid.417834.d, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health, ; Südufer 10, 17493 Greifswald-Insel Riems, Germany
                Author information
                http://orcid.org/0000-0002-0436-4480
                Article
                973
                10.1186/s40168-020-00973-z
                7896545
                33610182
                9e7a7b05-203c-4669-93d8-80fdfe3e52c7
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 May 2020
                : 7 December 2020
                Funding
                Funded by: German Federal Ministry of Food and Agriculture
                Award ID: 2819114019
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100010661, Horizon 2020 Framework Programme;
                Award ID: 874735
                Award Recipient :
                Categories
                Methodology
                Custom metadata
                © The Author(s) 2021

                metagenomics virus detection,capture enrichment,rna baits,virbaits 1.0,diagnostic tool,proficiency test,sars-cov-2

                Comments

                Comment on this article