16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review of wearable motion tracking systems used in rehabilitation following hip and knee replacement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical teams are under increasing pressure to facilitate early hospital discharge for total hip replacement and total knee replacement patients following surgery. A wide variety of wearable devices are being marketed to assist with rehabilitation following surgery. A review of wearable devices was undertaken to assess the evidence supporting their efficacy in assisting rehabilitation following total hip replacement and total knee replacement. A search was conducted using the electronic databases including Medline, CINAHL, Cochrane, PsycARTICLES, and PubMed of studies from January 2000 to October 2017. Five studies met the eligibility criteria, and all used an accelerometer and a gyroscope for their technology. A review of the studies found very little evidence to support the efficacy of the technology, although they show that the use of the technology is feasible. Future work should establish which wearable technology is most valuable to patients, which ones improve patient outcomes, and the most economical model for deploying the technology.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Why still in hospital after fast-track hip and knee arthroplasty?

          Background and purpose Length of stay (LOS) following total hip and knee arthroplasty (THA and TKA) has been reduced to about 3 days in fast-track setups with functional discharge criteria. Earlier studies have identified patient characteristics predicting LOS, but little is known about specific reasons for being hospitalized following fast-track THA and TKA. Patients and methods To determine clinical and logistical factors that keep patients in hospital for the first postoperative 24–72 hours, we performed a cohort study of consecutive, unselected patients undergoing unilateral primary THA (n = 98) or TKA (n = 109). Median length of stay was 2 days. Patients were operated with spinal anesthesia and received multimodal analgesia with paracetamol, a COX-2 inhibitor, and gabapentin—with opioid only on request. Fulfillment of functional discharge criteria was assessed twice daily and specified reasons for not allowing discharge were registered. Results Pain, dizziness, and general weakness were the main clinical reasons for being hospitalized at 24 and 48 hours postoperatively while nausea, vomiting, confusion, and sedation delayed discharge to a minimal extent. Waiting for blood transfusion (when needed), for start of physiotherapy, and for postoperative radiographic examination delayed discharge in one fifth of the patients. Interpretation Future efforts to enhance recovery and reduce length of stay after THA and TKA should focus on analgesia, prevention of orthostatism, and rapid recovery of muscle function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interactive wearable systems for upper body rehabilitation: a systematic review

            Background The development of interactive rehabilitation technologies which rely on wearable-sensing for upper body rehabilitation is attracting increasing research interest. This paper reviews related research with the aim: 1) To inventory and classify interactive wearable systems for movement and posture monitoring during upper body rehabilitation, regarding the sensing technology, system measurements and feedback conditions; 2) To gauge the wearability of the wearable systems; 3) To inventory the availability of clinical evidence supporting the effectiveness of related technologies. Method A systematic literature search was conducted in the following search engines: PubMed, ACM, Scopus and IEEE (January 2010–April 2016). Results Forty-five papers were included and discussed in a new cuboid taxonomy which consists of 3 dimensions: sensing technology, feedback modalities and system measurements. Wearable sensor systems were developed for persons in: 1) Neuro-rehabilitation: stroke (n = 21), spinal cord injury (n = 1), cerebral palsy (n = 2), Alzheimer (n = 1); 2) Musculoskeletal impairment: ligament rehabilitation (n = 1), arthritis (n = 1), frozen shoulder (n = 1), bones trauma (n = 1); 3) Others: chronic pulmonary obstructive disease (n = 1), chronic pain rehabilitation (n = 1) and other general rehabilitation (n = 14). Accelerometers and inertial measurement units (IMU) are the most frequently used technologies (84% of the papers). They are mostly used in multiple sensor configurations to measure upper limb kinematics and/or trunk posture. Sensors are placed mostly on the trunk, upper arm, the forearm, the wrist, and the finger. Typically sensors are attachable rather than embedded in wearable devices and garments; although studies that embed and integrate sensors are increasing in the last 4 years. 16 studies applied knowledge of result (KR) feedback, 14 studies applied knowledge of performance (KP) feedback and 15 studies applied both in various modalities. 16 studies have conducted their evaluation with patients and reported usability tests, while only three of them conducted clinical trials including one randomized clinical trial. Conclusions This review has shown that wearable systems are used mostly for the monitoring and provision of feedback on posture and upper extremity movements in stroke rehabilitation. The results indicated that accelerometers and IMUs are the most frequently used sensors, in most cases attached to the body through ad hoc contraptions for the purpose of improving range of motion and movement performance during upper body rehabilitation. Systems featuring sensors embedded in wearable appliances or garments are only beginning to emerge. Similarly, clinical evaluations are scarce and are further needed to provide evidence on effectiveness and pave the path towards implementation in clinical settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

              Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007). Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.
                Bookmark

                Author and article information

                Journal
                J Rehabil Assist Technol Eng
                J Rehabil Assist Technol Eng
                JRT
                spjrt
                Journal of Rehabilitation and Assistive Technologies Engineering
                SAGE Publications (Sage UK: London, England )
                2055-6683
                18 June 2018
                Jan-Dec 2018
                : 5
                : 2055668318771816
                Affiliations
                [1-2055668318771816]Orthopaedic Research Institute, Ringgold 6657, universityBournemouth University; , Bournemouth, UK
                Author notes
                [*]Shayan Bahadori, Orthopaedic Research Institute, Bournemouth University, 6th Floor Executive Business Centre, 89 Holdenhurst Road, Bournemouth BH8 8EB, UK. Email: sbahadori@ 123456bournemouth.ac.uk
                Article
                10.1177_2055668318771816
                10.1177/2055668318771816
                6453074
                31191937
                9e991347-daa0-4cd5-adab-0f79a7e4643c
                © The Author(s) 2018

                Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License ( http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 31 October 2017
                : 29 March 2018
                Categories
                Special Collection: Wearable Technologies for Active Living and Rehabilitation
                Custom metadata
                January-December 2018

                total knee replacement,total hip replacement,rehabilitation,wearables

                Comments

                Comment on this article