9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infralimbic cortex activation and motivated arousal induce histamine release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Appetitive behaviours occur in a state of behavioural and physiological activation that allows the optimal performance of these goal-directed behaviours. Here, we tested the hypothesis that histamine neurons under the command of the infralimbic cortex are important to provide behavioural activation. Extracellular histamine and serotonin were measured by microdialysis of the medial prefrontal cortex in behaving rats in parallel with a picrotoxin microinjection into the infralimbic cortex. The injection aroused the rats behaviourally, increased histamine release and decreased serotonin levels. Inhibition of the infralimbic cortex with muscimol produced the opposite effects on neurotransmitter release. The behavioural activation induced by motivating hungry rats with caged food was paralleled by an immediate histamine release, whereas awakening induced by tapping their microdialysis bowl increased serotonin, but not histamine levels. In conclusion, picrotoxin injection into the infralimbic cortex produces behavioural activation together with histamine release; in a similar manner, induction of an appetitive state produced histamine release, likely related to increased behavioural activation characteristic of an appetitive behaviour.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Parallel organization of functionally segregated circuits linking basal ganglia and cortex.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review. Neurobiological mechanisms for opponent motivational processes in addiction.

            The conceptualization of drug addiction as a compulsive disorder with excessive drug intake and loss of control over intake requires motivational mechanisms. Opponent process as a motivational theory for the negative reinforcement of drug dependence has long required a neurobiological explanation. Key neurochemical elements involved in reward and stress within basal forebrain structures involving the ventral striatum and extended amygdala are hypothesized to be dysregulated in addiction to convey the opponent motivational processes that drive dependence. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission such as dopamine and opioid peptides in the ventral striatum, but also recruitment of brain stress systems such as corticotropin-releasing factor (CRF), noradrenaline and dynorphin in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, anxiety-like responses and extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence and to contribute to stress-induced relapse. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for the long hypothesized opponent motivational processes responsible for the negative reinforcement driving addiction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants.

              Repeated exposure to psychostimulants such as cocaine and amphetamine produces behavioral sensitization, which is characterized by an augmented locomotor response to a subsequent psychostimulant challenge injection. Experimentation focused on the neural underpinnings of behavioral sensitization has progressed from a singular focus on dopamine transmission in the nucleus accumbens and striatum to the study of cellular and molecular mechanisms that occur throughout the neural circuitry in which the mesocorticolimbic dopamine projections are embedded. This research effort has yielded a conglomerate of data that has resisted simple interpretations, primarily because no single neuronal effect is likely to be responsible for the expression of behavioral sensitization. The present review examines the literature and critically evaluates the extent to which the neural consequences of repeated psychostimulant administration are associated with the expression of behavioral sensitization. The neural alterations found to contribute to the long-term expression of behavioral sensitization are centered in a collection of interconnected limbic nuclei, which are termed the 'motive' circuit. This neural circuit is used as a template to organize the relevant biochemical and molecular findings into a model of the expression of behavioral sensitization.
                Bookmark

                Author and article information

                Journal
                Behav Pharmacol
                Behav Pharmacol
                FBP
                Behavioural Pharmacology
                Lippincott Williams and Wilkins
                0955-8810
                1473-5849
                June 2015
                29 April 2015
                : 26
                : 4
                : 338-344
                Affiliations
                Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Departamento de Fisiología, Alameda, Santiago, Chile
                Author notes
                Correspondence to Maria Eugenia Riveros, PhD, Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Departamento de Fisiología, Laboratorio de Neurobiologia, Alameda 340, Santiago, Chile E-mail: merivero@ 123456uc.cl
                Article
                10.1097/FBP.0000000000000129
                4416028
                25746330
                9ead76e9-8c39-499b-b81c-74a5fcaf304d
                Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially. http://creativecommons.org/licenses/by-nc-nd/3.0.

                History
                : 4 April 2014
                : 6 January 2015
                Categories
                Research Reports
                Custom metadata
                TRUE

                appetitive behaviour,arousal,microdialysis,motivation,sprague–dawley

                Comments

                Comment on this article