5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ABCC10 Plays a Significant Role in the Transport of Gefitinib and Contributes to Acquired Resistance to Gefitinib in NSCLC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (EGFR-TKI), is used clinically as first-line therapy in patients with advanced non-small cell lung cancer (NSCLC) with EGFR activating mutations, but the inevitable development of acquired resistance limits its efficacy. In up to 30–40% of NSCLC cases, the mechanism underlying acquired resistance remains unknown. ATP-binding cassette (ABC) transporters are a family of membrane proteins that can significantly influence the bioavailability of numerous drugs, and have confirmed to play an essential role in multidrug resistance (MDR) in cancer chemotherapy. However, their role in acquired resistance to gefitnib in NSCLC has not been well studied. Here, through RNA sequencing (RNA-Seq) technology we assessed the differentially expressed ABC transporters in gefitinib-sensitive (PC9 and H292) and gefitinib-resistant (PC9/GR and H292/GR) NSCLC cells, with ABCC10 identified as a transporter of interest. Both ABCC10 mRNA and protein were significantly increased in acquired gefitinib-resistant NSCLC cells, independent of EGFR mutation status. In vitro transport assay showed that ABCC10 could actively efflux gefitinib, with an efflux ratio (ER) of 7.8. Further results from in vitro cell line models and in vivo xenograft models showed that overexpression of ABCC10 led to a reduction in gefitinib sensitivity through decreasing the intracellular gefitinib accumulation. Our data suggest that ABCC10 has an important role in acquired resistance to gefitinib in NSCLC, which can serve as a novel predictive marker and a potential therapeutic target in gefitinib treatment.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane transporters in drug development.

          Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview.

            Active drug efflux transporters of the ATP binding cassette (ABC)-containing family of proteins have a major impact on the pharmacological behavior of most of the drugs in use today. Pharmacological properties affected by ABC transporters include the oral bioavailability, hepatobiliary, direct intestinal, and urinary excretion of drugs and drug-metabolites and -conjugates. Moreover, the penetration of drugs into a range of important pharmacological sanctuaries, such as brain, testis, and fetus, and the penetration into specific cell- and tissue compartments can be extensively limited by ABC transporters. These interactions with ABC transporters determine to a large extent the clinical usefulness, side effects and toxicity risks of drugs. Many other xenotoxins, (pre-)carcinogens and endogenous compounds are also influenced by the ABC transporters, with corresponding consequences for the well-being of the individual. We aim to provide an overview of properties of the mammalian ABC transporters known to mediate significant transport of clinically relevant drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms of resistance to EGFR-targeted drugs: lung cancer

              Despite the improvement in clinical outcomes derived by the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of patients with advanced non-small cell lung cancer (NSCLC) whose tumours harbour EGFR-activating mutations, prognosis remains unfavourable because of the occurrence of either intrinsic or acquired resistance. We reviewed the published literature and abstracts of oral and poster presentations from international conferences addressing EGFR-TKIs resistance mechanisms discovered in preclinical models and in patients with NSCLC. The molecular heterogeneity of lung cancer has several implications in terms of possible mechanisms of either intrinsic or acquired resistance to EGFR-targeted inhibitors. Several mechanisms of resistance have been described to EGFR-TKIs, such as the occurrence of secondary mutation (T790M, C797S), the activation of alternative signalling (Met, HGF, AXL, Hh, IGF-1R), the aberrance of the downstream pathways (AKT mutations, loss of PTEN), the impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism) and histological transformation. Although some of the mechanisms of resistance have been identified, much additional information is needed to understand and overcome resistance to EGFR-TKI agents. The majority of resistance mechanisms described are the result of a selection of pre-existing clones; thus, studies on the mechanisms by which subclonal alterations have an impact on tumour biology and influence cancer progression are extremely important in order to define the best treatment strategy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                20 November 2018
                2018
                : 9
                : 1312
                Affiliations
                [1] 1Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University , Shanghai, China
                [2] 2Institute of Life Sciences, Chongqing Medical University , Chongqing, China
                [3] 3Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University , Changsha, China
                Author notes

                Edited by: Petr Pavek, Charles University, Czechia

                Reviewed by: Zhihao Liu, University of Illinois at Chicago, United States; Cesare Indiveri, Università della Calabria, Italy

                *Correspondence: Lanxiang Wu lxwu2008@ 123456126.com

                This article was submitted to Drug Metabolism and Transport, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.01312
                6256088
                30515095
                9eb06ddb-e34c-4232-8dd6-6c4bda9639ae
                Copyright © 2018 Zhao, Huang, Shi, Dai, Wu and Zhou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 September 2018
                : 29 October 2018
                Page count
                Figures: 10, Tables: 0, Equations: 2, References: 47, Pages: 13, Words: 8356
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                abc transporter,abcc10,gefitinib,acquired resistance,non-small cell lung cancer

                Comments

                Comment on this article