20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sound thoughts: How understanding the teenage brain may help us look after their ears

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroscience's study of brain structures and their function provides understanding of the biological underpinnings of behavior, including factors that may assist or act as barriers for programs designed to bring about behavioral change. This understanding can benefit how disease prevention and health promotion campaigns are developed and disseminated for greater effectiveness. Increasingly, public health campaigns have harnessed an understanding of neurobiology (and its complex interactions with social contexts and emotional and behavioral development of adolescents) and applied this knowledge to health promotion campaigns to enhance changed attitudes toward disease prevention and encourage healthy lifestyle choices (Bradshaw et al., 2012; Hall, 2016; Suleiman and Dahl, 2017; Pei et al., 2019). While not an exhaustive list, some of the health focus areas that have incorporated neuroscience in their health promotion strategies include substance use (through understanding the strong association between substance use in adolescents and high levels of sensation seeking; Crawford et al., 2003), sexual health (via improved understanding of developing decision-making skills and the role of emotion and social influences; Ballonoff Suleiman and Brindis, 2014), and dietary health (by taking into account the neurobiological needs of safety and non-judgement; Debenham et al., 2022). Together, these examples illustrate the importance of using our growing neuroscience knowledge about the susceptibility of risk taking, sensation seeking, and neuroplasticity in adolescence. These influences and their dynamic interplay with health conditions during this developmental phase make it an ideal time to implement positive, health-protective behavior. The consideration of neurobiological factors has been effective in increasing receptiveness to prevention messages that result in maximum engagement with young people and may be applicable across a range of health contexts and disciplines (Michie et al., 2011; Bradshaw et al., 2012; Meinke and Martin, 2017; Pei et al., 2019). One, as yet unexplored, area that may benefit from consideration is hearing health, in particular, the prevention of noise induced hearing loss (NIHL). The impacts of hearing loss are well-documented to have far-reaching consequences that extend beyond listening and communication difficulties, impacting on personal, societal, and global levels if left untreated (Reed et al., 2019; Sheppard et al., 2020). The biological processes of how and when noise affects hearing is known—the risk of NIHL is based on the duration, frequency, and intensity of the noise exposure, regardless of the source (Clark and Bohne, 1999; Zhao et al., 2010), and so most prevention efforts are targeted at reducing the volume of sounds (i.e., reducing the risk at the source) to which people are exposed because it is more feasible to implement. Lowering volumes reduces the risk of the source (a higher target for hierarchy of control) whereas changes to duration can be limited by the nature of the activity (for example, duration of concerts, physical fitness class is less amenable to change). Most countries have regulatory requirements and governance around occupational noise exposure as part of health and safety controls. However, managing recreational noise exposure is less straightforward. Occupational noise regulations apply regardless of the noise source (machinery or music) however, these are only directed at employees rather than attendees. Even then questions have been raised as to the effectiveness of these for music venues, and adherence by such workplaces to the regulations; (Barlow and Castilla-Sanchez, 2012; Kelly et al., 2012; World Health Organization, 2022). For non-occupational exposures, it is difficult to develop regulations that take into account the wide range of possible high-volume recreational activities and individual variation in participation. As a result, recreational noise exposure remains highly dependent on the choices made by individuals about what activities they participate in, for how long, and whether they choose to take any precautions to reduce the risk to their hearing. As individual behavior remains a major determiner of the risk to hearing from noise, prevention activities aim to motivate and encourage engagement with noise-reduction. The cumulative nature of NIHL means that there is merit in focussing attention on the noise exposure behaviors of young people, with WHO estimates that more than one billion young people (aged 12–35 years) are at risk of hearing loss due to recreational exposure to loud sounds (2022). Recreational NIHL is preventable, its consequences are as detrimental comparative to occupational NIHL, and it should be made a public health priority (Murphy et al., 2018; Pienkowski, 2021), However, noise-induced hearing loss may not be detectable or treatable during adolescence given the cumulative nature of hearing damage (Williams and Carter, 2017). Thus, this opinion piece foscusses on prevention efforts that aim to reduce the risks to hearing over time. Adolescence is a period marked by physical change and neural development and one which also encompasses identity formation and social growth that extends from 10 to 24 years (Sawyer et al., 2018). This formative time in the life course is also associated with skill learning, exploration, and risk-taking behaviors that could promote wellbeing (such as relationship building, shifts in sociocultural perspectives, and greater peer and societal engagement). Yet, adolescents may also be vulnerable to risk-taking and sensation seeking and forming negative behavioral patterns can also lead to adverse outcomes that heighten health risks (such as substance use and engaging in risky behaviors, among others) which could increase the burden of disease in later decades of life (Suleiman and Dahl, 2017; Patton et al., 2018; Pei et al., 2019). There has, therefore, been an increasing global focus on health of adolescents (currently the largest population in human history) recognizing that appropriate health investments are needed to ensure that future generations can thrive (Patton et al., 2018). Historically, NIHL efforts focus on hearing health education and awareness building, but there is evidence to suggest that these have been limited in their effectiveness to change behavior, shift cultural norms, or improve rates of using hearing protective devices (Weichbold and Zorowka, 2007; Vogel et al., 2008; Widén, 2013; Gilles, 2014; Keppler et al., 2015; Steinberg, 2015). Prevention of noise-induced hearing loss for adolescence should aim to set up good habits to listen safely well into future when noise risks often start to increase. As the biggest risk is often from noise exposure that is specifically sought out in leisure activities, efforts aiming to reduce rather than avoid or ban noise might be most feasible. Thus, the challenge for this population is to foster or promote a positive habit to seek out sound safely that could facilitate safe sensation-seeking. Whilst it may be possible to educate adolescents to avoid extremely loud situations where acoustic shock symptoms are obvious and immediate signs of damage, much of prevention work is targeted at more subtly risky situations where damage may occur unnoticed. Progressively, there has been greater attention on utilizing theoretical underpinnings grafted from behavior change principles to assist researchers and clinicians in better understanding hearing health behavior change. Through this, we can broaden how we conceptualize young people's attitudes, beliefs, intentions, and motivations tailor interventions that promote hearing health behavior changes (Coulson et al., 2016). But in addition to behavior change and health promotion models, our increasing understanding of neurobiology during adolescence may provide further dimensions to how to promote and foster healthy hearing behaviors. In particular, it is worth considering two significant factors associated with adolescence—sensation seeking and social influence. Brain areas responsible for processing reward sensitivity have shown to be hyperactivated in young adults engaging in risk-taking behaviors (Telzer et al., 2014; Qu et al., 2015). This sensation-seeking appeal is further positively reinforced by peer influence. The quality of peer relationships is crucial as it can have a positive buffering effect (that serves as a protective behavior), or increase stress, thus increasing risk-taking behaviors that negatively impact health (Galván, 2013). Such mechanisms may explain the commonly seen disconnect between knowledge of noise-exposure risks and preventative action. Despite awareness of risks, research has frequently shown individuals choosing to participate in noisy activities, and/or declining opportunities to mitigate that risk through hearing protection activities. Social norms have been implicated in young people's decisions about personal music player listening behaviors (Gilliver et al., 2012) and rejection of earplugs at music venues (Beach and Gilliver, 2019). Sensation-seeking, too, has been noted as an important factor for music-listening. An investigation of young people (18–25 years) by Welch and Fremaux (2017) found that enjoyment of loud sounds at music venues was related to enabling positive physical and social experiences. The physical sensation of loud music heightens emotions and arousal state, masks negative emotions, and removes inhibitions. To this end, loud music and sounds promote intimacy and social identity and further emphasize the desire to adopt or adhere to social norms. Taken together, this has implications when considering interventions that target recreational NIHL during adolescence. If the neurobiology of adolescents and young adults is dominated by social bonds, peer influence, and heightened risk-taking behaviors, then current approaches to hearing conservation campaigns that simply aim to provide knowledge and educate the harmful effects of loud noise stemming from recreational activities are incongruent with the needs of the target audience. A transdisciplinary approach is necessary to develop health promotion programs. Researchers, public health policy decision-makers, health practitioners, and the education system are required to work collaboratively to harness the ways in which neurobiology interacts with socio-contextual factors to order to inform effective health campaigns that are meaningful and age-appropriate (Beach, 2017; Meinke et al., 2017; Beach and Gilliver, 2019). Neuroscience-informed approaches to tackling adolescent health issues should be seen as complementary to existing behavioral and more traditional approaches to disease prevention and health promotion. The premise of this innovative approach has shown to be successful at informing and educating young people, and de-stigmatizing health conditions while promoting tolerance and understanding of (neuro)biological limitations of the adolescent brain (O'Connor and Joffe, 2013). Summary and future directions/discussions Adolescence is a formative period in life with a dual nature of vulnerability to risks and adaptability as an opportunity to form life-changing, health-promoting habits. With the rising number of young people at risk of recreational NIHL, there is a need for more effective ways to address this issue. The known social aspect of recreational noise experiences and the power of sensation-seeking of the adolescent brain warrants further exploration and consideration in NIHL prevention campaigns. The application and contributions of neuroscience to inform future NIHL prevention programs for this age group will make a novel, meaningful, and innovative pursuit. It also presents an opportunity for neuroscientists who research adolescent health behaviors to explore an—as yet uncharted area of research. Neuroscience-informed approaches to reducing recreational NIHL for young people are required to meet the needs of the developing adolescent brain. Designing age appropriate NIHL campaigns that take these factors into account may assist to increase the likelihood that interventions are efficacious and cost-effective. Author contributions JP and MG contributed to the conception and subsequent preparation of this manuscript. Both authors contributed to the article and approved the submitted version. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The behaviour change wheel: A new method for characterising and designing behaviour change interventions

          Background Improving the design and implementation of evidence-based practice depends on successful behaviour change interventions. This requires an appropriate method for characterising interventions and linking them to an analysis of the targeted behaviour. There exists a plethora of frameworks of behaviour change interventions, but it is not clear how well they serve this purpose. This paper evaluates these frameworks, and develops and evaluates a new framework aimed at overcoming their limitations. Methods A systematic search of electronic databases and consultation with behaviour change experts were used to identify frameworks of behaviour change interventions. These were evaluated according to three criteria: comprehensiveness, coherence, and a clear link to an overarching model of behaviour. A new framework was developed to meet these criteria. The reliability with which it could be applied was examined in two domains of behaviour change: tobacco control and obesity. Results Nineteen frameworks were identified covering nine intervention functions and seven policy categories that could enable those interventions. None of the frameworks reviewed covered the full range of intervention functions or policies, and only a minority met the criteria of coherence or linkage to a model of behaviour. At the centre of a proposed new framework is a 'behaviour system' involving three essential conditions: capability, opportunity, and motivation (what we term the 'COM-B system'). This forms the hub of a 'behaviour change wheel' (BCW) around which are positioned the nine intervention functions aimed at addressing deficits in one or more of these conditions; around this are placed seven categories of policy that could enable those interventions to occur. The BCW was used reliably to characterise interventions within the English Department of Health's 2010 tobacco control strategy and the National Institute of Health and Clinical Excellence's guidance on reducing obesity. Conclusions Interventions and policies to change behaviour can be usefully characterised by means of a BCW comprising: a 'behaviour system' at the hub, encircled by intervention functions and then by policy categories. Research is needed to establish how far the BCW can lead to more efficient design of effective interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The age of adolescence

            Adolescence is the phase of life stretching between childhood and adulthood, and its definition has long posed a conundrum. Adolescence encompasses elements of biological growth and major social role transitions, both of which have changed in the past century. Earlier puberty has accelerated the onset of adolescence in nearly all populations, while understanding of continued growth has lifted its endpoint age well into the 20s. In parallel, delayed timing of role transitions, including completion of education, marriage, and parenthood, continue to shift popular perceptions of when adulthood begins. Arguably, the transition period from childhood to adulthood now occupies a greater portion of the life course than ever before at a time when unprecedented social forces, including marketing and digital media, are affecting health and wellbeing across these years. An expanded and more inclusive definition of adolescence is essential for developmentally appropriate framing of laws, social policies, and service systems. Rather than age 10-19 years, a definition of 10-24 years corresponds more closely to adolescent growth and popular understandings of this life phase and would facilitate extended investments across a broader range of settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adolescence and the next generation

              Adolescent growth and social development shape the early development of offspring from preconception through to the post-partum period through distinct processes in males and females. At a time of great change in the forces shaping adolescence, including the timing of parenthood, investments in today’s adolescents, the largest cohort in human history, will yield great dividends for future generations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Integr Neurosci
                Front Integr Neurosci
                Front. Integr. Neurosci.
                Frontiers in Integrative Neuroscience
                Frontiers Media S.A.
                1662-5145
                29 November 2022
                2022
                : 16
                : 1016842
                Affiliations
                [1] 1National Acoustic Laboratories, Department of Audiological Sciences, Macquarie University , Sydney, NSW, Australia
                [2] 2National Acoustic Laboratories, Department of Behavioural Sciences, Macquarie University , Sydney, NSW, Australia
                Author notes

                Edited by: Hui Wang, Shanghai Jiao Tong University, China

                Reviewed by: Yanyan Ding, Huazhong University of Science and Technology, China; Chi Yhun Lo, Toronto Metropolitan University, Canada; Thais Morata, Centers for Disease Control and Prevention (CDC), United States

                *Correspondence: Jermy Pang jermy.pang@ 123456nal.gov.au

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fnint.2022.1016842
                9744921
                36524027
                9ebc0cf1-2a22-4656-af21-f7ddebd93e13
                Copyright © 2022 Pang and Gilliver.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 August 2022
                : 07 November 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 37, Pages: 4, Words: 3122
                Categories
                Neuroscience
                Opinion

                Neurosciences
                hearing loss,hearing health,noise,adolescence,prevention,neuroscience
                Neurosciences
                hearing loss, hearing health, noise, adolescence, prevention, neuroscience

                Comments

                Comment on this article