40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein–coupled receptors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Communication between different signaling pathways enables cells to coordinate the responses to diverse environmental signals. Activation of the transmembrane growth factor precursors plays a critical role in this communication and often involves metalloprotease-mediated proteolysis. Stimulation of G protein–coupled receptors (GPCR) transactivates the EGF receptors (EGFRs), which occurs via a metalloprotease-dependent cleavage of heparin-binding EGF (HB-EGF). However, the metalloprotease mediating the transactivation remains elusive. We show that the integral membrane metalloprotease Kuzbanian (KUZ; ADAM10), which controls Notch signaling in Drosophila, stimulates GPCR transactivation of EGFR. Upon stimulation of the bombesin receptors, KUZ increases the docking and activation of adaptors Src homology 2 domain–containing protein and Gab1 on the EGFR, and activation of Ras and Erk. In contrast, transfection of a protease domain–deleted KUZ, or blocking endogenous KUZ by morpholino antisense oligonucleotides, suppresses the transactivation. The effect of KUZ on shedding of HB-EGF and consequent transactivation of the EGFR depends on its metalloprotease activity. GPCR activation enhances the association of KUZ and its substrate HB-EGF with tetraspanin CD9. Thus, KUZ regulates the relay between the GPCR and EGFR signaling pathways.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF.

             N Prenzel,  E B Zwick,  H Daub (2015)
            Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the mitogenic activity of ligands such as lysophosphatidic acid, endothelin, thrombin, bombesin and carbachol, provides evidence for such an interconnected communication network. Here we show that EGFR transactivation upon GPCR stimulation involves proHB-EGF and a metalloproteinase activity that is rapidly induced upon GPCR-ligand interaction. We show that inhibition of proHB-EGF processing blocks GPCR-induced EGFR transactivation and downstream signals. The pathophysiological significance of this mechanism is demonstrated by inhibition of constitutive EGFR activity upon treatment of PC3 prostate carcinoma cells with the metalloproteinase inhibitor batimastat. Together, our results establish a new mechanistic concept for cross-communication among different signalling systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors.

              Transduction of a mitogenic signal from the cell membrane to the nucleus involves the adapter proteins SHC and Grb2, which mediate activation of the Ras/mitogen-activated protein (MAP) kinase pathway. In contrast to receptor tyrosine kinases (RTKs), the signalling steps leading to Ras/MAP kinase activation by G-protein-coupled receptors (GPCRs) are still poorly characterized but appear to include beta gamma subunits of heterotrimeric G-proteins and as-yet unidentified tyrosine kinases. We report here that the epidermal growth factor receptor (EGFR) and the neu oncoprotein become rapidly tyrosine-phosphorylated upon stimulation of Rat-1 cells with the GPCR agonists endothelin-1, lysophosphatic acid and thrombin, suggesting that there is an intracellular mechanism for transactivation. Specific inhibition of EGFR function by either the selective tyrphostin AG1478 or a dominant-negative EGFR mutant suppressed MAP kinase activation and strongly inhibited induction of fos gene expression and DNA synthesis. Our results demonstrate a role for RTKs as downstream mediators in GPCR mitogenic signalling and suggest a ligand-independent mechanism of RTK activation through intracellular signal crosstalk.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                22 July 2002
                : 158
                : 2
                : 221-226
                Affiliations
                Department of Anatomy, University of California, San Francisco, CA 94143
                Author notes

                Address correspondence to Zena Werb, Department of Anatomy, HSW 1321, University of California, 513 Parnassus Ave., San Francisco, CA 94143-0452. Tel.: (415) 476-4622. Fax: (415) 476-4565. E-mail: zena@ 123456itsa.ucsf.edu

                Article
                200112026
                10.1083/jcb.200112026
                2173139
                12119356
                9ec59e7e-c72b-4a62-b2d2-93c852a5b945
                Copyright © 2002, The Rockefeller University Press
                Categories
                Report

                Cell biology

                signal crosstalk; bombesin; hb-egf; shedding; tetraspanin

                Comments

                Comment on this article