18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of serum cystatin-C and symmetric dimethylarginine concentrations in dogs with heart failure from chronic mitral valvular insufficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduction in glomerular filtration rate (GFR) is a common complication in advanced stages of heart failure (HF). The convenient and precise assessment for GFR would be useful for early detection of renal impairment in HF dogs. Our hypothesis of this study was the GFR would be reduced in advanced stages of HF from chronic mitral valvular insufficiency (CMVI), as indicated by renal markers including serum cystatin-C (Cys-C) and symmetric dimethylarginine (SDMA) concentrations. Forty-three client-owned dogs consisting of 33 dogs with different stages of HF from CMVI and 10 age-matched healthy dogs were enrolled in this study. Serum Cys-C and SDMA concentrations along with other renal (i.e., urea nitrogen and creatinine) and echocardiographic markers were evaluated in healthy and CMVI dogs. Serum Cys-C concentrations were 1.4 ± 0.4 mg/ l in control, 2.1 ± 0.9 mg /l in ISACHC I, 2.9 ± 0.8 mg/ l in ISACHC II and 3.6 ± 0.6 mg/ l in ISACHC III dogs, whereas serum SDMA concentrations were 8 ± 2 µg/d l in control, 14 ± 3 µg/d l in ISACHC I, 18 ± 6 µg/d l in ISACHC II and 22 ± 7 µg/d l in ISACHC III dogs. There was close correlation of serum Cys-C and SDMA concentrations to serum creatinine, urea nitrogen and the severity of HF. Our study demonstrated that the GFR was decreased in dogs with CMVI having earlier stages of HF.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiorenal syndrome.

          The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis.

            Serum cystatin C (Cys C) has been proposed as a simple, accurate, and rapid endogenous marker of glomerular filtration rate (GFR) in research and clinical practice. However, there are conflicting reports regarding the superiority of Cys C over serum creatinine (Cr), with a few studies suggesting no significant difference. We performed a meta-analysis of available data from various studies to compare the accuracy of Cys C and Cr in relation to a reference standard of GFR. A bibliographic search showed 46 articles until December 31, 2001. We also retrieved data from eight other studies presented and published in abstract form. The overall correlation coefficient for the reciprocal of serum Cys C (r = 0.816; 95% confidence interval [CI], 0.804 to 0.826) was superior to that of the reciprocal of serum Cr (r = 0.742; 95% CI, 0.726 to 0.758; P < 0.001). Similarly, receiver operating characteristic (ROC)-plot area under the curve (AUC) values for 1/Cys C had greater identity with the reference test for GFR (mean ROC-plot AUC for Cys C, 0.926; 95% CI, 0.892 to 0.960) than ROC-plot AUC values for 1/Cr (mean ROC-plot AUC for serum Cr, 0.837; 95% CI, 0.796 to 0.878; P < 0.001). Immunonephelometric methods of Cys C assay produced significantly greater correlations than other assay methods (r = 0.846 versus r = 0.784; P < 0.001). In this meta-analysis using currently available data, serum Cys C is clearly superior to serum Cr as a marker of GFR measured by correlation or mean ROC-plot AUC. Copyright 2002 by the National Kidney Foundation, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative

              A consensus conference on cardio-renal syndromes (CRS) was held in Venice Italy, in September 2008 under the auspices of the Acute Dialysis Quality Initiative (ADQI). The following topics were matter of discussion after a systematic literature review and the appraisal of the best available evidence: definition/classification system; epidemiology; diagnostic criteria and biomarkers; prevention/protection strategies; management and therapy. The umbrella term CRS was used to identify a disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ. Different syndromes were identified and classified into five subtypes. Acute CRS (type 1): acute worsening of heart function (AHF–ACS) leading to kidney injury and/or dysfunction. Chronic cardio-renal syndrome (type 2): chronic abnormalities in heart function (CHF-CHD) leading to kidney injury and/or dysfunction. Acute reno-cardiac syndrome (type 3): acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. Chronic reno-cardiac syndrome (type 4): chronic kidney disease leading to heart injury, disease, and/or dysfunction. Secondary CRS (type 5): systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. Consensus statements concerning epidemiology, diagnosis, prevention, and management strategies are discussed in the paper for each of the syndromes.
                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                30 September 2016
                January 2017
                : 79
                : 1
                : 41-46
                Affiliations
                [1) ]Section of Small Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
                [2) ]Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, U.S.A.
                Author notes
                [* ]Correspondence to: Hyun, C., Section of Small Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea. e-mail: hyun5188@ 123456kangwon.ac.kr
                Article
                16-0188
                10.1292/jvms.16-0188
                5289235
                27725349
                9ed51f0b-691e-4fc6-a19b-d1ea90b869f9
                ©2017 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 11 April 2016
                : 15 September 2016
                Categories
                Internal Medicine
                Full Paper

                biomarker,chronic mitral valvular disease,cystatin-c,heart failure,symmetric dimethylarginine

                Comments

                Comment on this article