40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various mechanisms exist that enable bacteria to resist bacteriophage infection. Resistance strategies include the abortive infection (Abi) systems, which promote cell death and limit phage replication within a bacterial population. A highly effective 2-gene Abi system from the phytopathogen Erwinia carotovora subspecies atroseptica, designated ToxIN, is described. The ToxIN Abi system also functions as a toxin-antitoxin (TA) pair, with ToxN inhibiting bacterial growth and the tandemly repeated ToxI RNA antitoxin counteracting the toxicity. TA modules are currently divided into 2 classes, protein and RNA antisense. We provide evidence that ToxIN defines an entirely new TA class that functions via a novel protein-RNA mechanism, with analogous systems present in diverse bacteria. Despite the debated role of TA systems, we demonstrate that ToxIN provides viral resistance in a range of bacterial genera against multiple phages. This is the first demonstration of a novel mechanistic class of TA systems and of an Abi system functioning in different bacterial genera, both with implications for the dynamics of phage-bacterial interactions.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Virioplankton: Viruses in Aquatic Ecosystems

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea.

            Arrays of clustered, regularly interspaced short palindromic repeats (CRISPRs) are widespread in the genomes of many bacteria and almost all archaea. These arrays are composed of direct repeats that are separated by similarly sized non-repetitive spacers. CRISPR arrays, together with a group of associated proteins, confer resistance to phages, possibly by an RNA-interference-like mechanism. This Progress discusses the structure and function of this newly recognized antiviral mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phage abortive infection in lactococci: variations on a theme.

              Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 20 2009
                January 20 2009
                January 05 2009
                : 106
                : 3
                : 894-899
                Article
                10.1073/pnas.0808832106
                2630095
                19124776
                9ed9f2bf-613f-4cc6-8b49-36241e10589f
                © 2009

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article